decomposition by subpopulations of the bonferroni indexes
play

Decomposition by Subpopulations of the Bonferroni Indexes I. Valli - PowerPoint PPT Presentation

Decomposition by Subpopulations of the Bonferroni Indexes I. Valli June 23, 2016 I. Valli Universit degli Studi di Milano Bicocca 1 / 66 Intro Let Y a non-negative variate, usually income, observed on N units of a finite population and, 0


  1. Decomposition by Subpopulations of the Bonferroni Indexes I. Valli June 23, 2016 I. Valli Università degli Studi di Milano Bicocca 1 / 66

  2. Intro Let Y a non-negative variate, usually income, observed on N units of a finite population and, 0 ≤ y (1) ≤ . . . ≤ y ( i ) ≤ . . . ≤ y ( N ) > 0 the N ordered values. I. Valli Università degli Studi di Milano Bicocca 2 / 66

  3. Intro The study of concentration (hereafter “inequality”) can be traced from the end of XIX sec. Since ∀ i = 1 , . . . , N � i t =1 y ( t ) where, p ( i ) = i p ( i ) ≥ q ( i ) N ; q ( i ) = T ( Y ) in 1914 Corrado Gini claimed that the inequality is more strong when stronger is the above reported inequality. In this terms, Gini suggested as point inequality measure the relative variation R ( i ) ( Y ) = p ( i ) − q ( i ) p ( i ) and as synthetic measure their weighted mean p ( i ) − q ( i ) � N − 1 · p ( i ) � N − 1 i =1 ( p ( i ) − q ( i ) ) i =1 p ( i ) ˜ R ( Y ) = = . � N − 1 � N − 1 i =1 p ( i ) i =1 p ( i ) I. Valli Università degli Studi di Milano Bicocca 3 / 66

  4. Intro In 1930, Carlo Emilio Bonferroni suggests as measures to evaluate the inequality the point index � i t =1 y ( t ) V ( i ) ( Y ) = M ( Y ) − i M ( Y ) and as synthetic index their arithmetic mean: N − 1 1 ˜ � V ( Y ) = V ( i ) ( Y ) . N − 1 i =1 I. Valli Università degli Studi di Milano Bicocca 4 / 66

  5. Intro In 1940 Mario De Vergottini showed that: R ( i ) ( Y ) = V ( i ) ( Y ) and N − 1 1 2 i ˜ � R ( Y ) = V ( i ) ( Y ) · N − 1 N − 1 i =1 I. Valli Università degli Studi di Milano Bicocca 5 / 66

  6. Definitions and notation Let: i � Q ( i ) ( Y ) = y ( t ) , i = 1 , . . . N (1) t =1 be the income of the i poorest population units; N � T ( Y ) = Q ( N ) ( Y ) = y ( i ) ; (2) i =1 M ( i ) ( Y ) = Q ( i ) ( Y ) − ; (3) i M ( Y ) = T ( Y ) − = M ( N ) ( Y ) . (4) N I. Valli Università degli Studi di Milano Bicocca 6 / 66

  7. Definitions and notation The Bonferroni (1930) point and synthetic inequality measures are: − V ( i ) ( Y ) = M ( Y ) − M ( i ) ( Y ) ; i = 1 , . . . , N (5) M ( Y ) N − 1 1 ˜ � V ( Y ) = V ( i ) ( Y ) , (6) N − 1 i =1 respectively. Note that V ( i ) ( Y ) is the relative variation of the − M ( i ) ( Y ) w.r.t. M ( Y ) , hence, ˜ lower mean V ( Y ) is their (simple) arithmetic mean. I. Valli Università degli Studi di Milano Bicocca 7 / 66

  8. Definitions and notation In case of maximum inequality � � y (1) = . . . = y ( N − 1) = 0 , y ( N ) > 0 it is known that ˜ V ( Y ) = 1 , for all N ≥ 2 . Note that ˜ V ( Y ) does not discern among maximum inequality cases with different values of N . In the case of maximum inequality, it seems more reasonable that the value of an inequality index C N ( Y ) , evaluated on N units, is such that: (a) C N ( Y ) is an increasing and positive function of N ; (b) N →∞ C N ( Y ) = 1 . lim I. Valli Università degli Studi di Milano Bicocca 8 / 66

  9. Definitions and notation Now, multiplying, both sides of (6) by N − 1 N , we have: N − 1 N V ′ ( Y ) = N − 1 V ( Y ) = 1 V ( i ) ( Y ) = 1 · ˜ � � N · N · V ( i ) ( Y ) . (7) N i =1 i =1 Thus, in case of maximum inequality, V ′ ( Y ) = 1 − 1 N . Note that 1 − 1 N is an increasing and positive function of N such that N →∞ 1 − 1 lim N = 1 . I. Valli Università degli Studi di Milano Bicocca 9 / 66

  10. Definitions and notation Tabella 1: Distribution of N = 10 units and calculation of V ( i ) ( Y ) and V ( Y ) = 0 , 5157 − i y ( i ) Q ( i ) ( Y ) M ( i ) ( Y ) V ( i ) ( Y ) 1 2 2 2,00 0,9333 2 2 4 2,00 0,9333 3 8 12 4,00 0,8667 4 24 36 9,00 0,70 5 29 65 13,00 0,5667 6 37 102 17,00 0,4333 7 37 139 19,8571 0,3381 8 37 176 22 0,2667 9 62 238 26,4444 0,1185 10 62 300 30 0,00 Total 5,1566 I. Valli Università degli Studi di Milano Bicocca 10 / 66

  11. Definitions and notation The value of V ′ ( Y ) = 1 � N i =1 V ( i ) ( Y ) can be interpreted as the N sum of the areas of N rectangles, each with basis 1 /N and height V ( i ) ( Y ) . To draw the inequality diagram V ( i ) ( Y ) , it is needed, first of all, to obtain N points of coordinates � i � N , V ( i ) ( Y ) . Then, we obtain N rectangles by the following 0 , 1 � � procedure: the first rectangle has abscissas in the interval N � � and ordiantes in the interval 0 , V (1) ( Y ) . The i − th rectangle, � i − 1 N , i � i = 2 , . . . , N , has abscissas in the interval and N � � ordinates in the interval 0 , V ( i ) ( Y ) . Figure 1 reports the graphs of V ( i ) ( Y ) . I. Valli Università degli Studi di Milano Bicocca 11 / 66

  12. Definitions and notation Figura 1: Graphs of V ( i ) ( Y ) 1.0 ● ● ● ● 0.8 ● 0.6 ● V ( i ) ( Y ) ● 0.4 ● ● 0.2 ● 0.0 ● 0.0 0.2 0.4 0.6 0.8 1.0 p i I. Valli Università degli Studi di Milano Bicocca 12 / 66

  13. Definitions and notation in the frequency distribution framework The last column of Table 1 shows that V ( i ) ( Y ) may not be constant for units taking the same value of Y . This behavior of V ( i ) ( Y ) is not reasonable in the decomposition by subpopulation because units with the same value of Y may belong to different subpopulations. We will overcome this situation by substituting the values of V ( i ) ( Y ) corresponding to units with the same value y h of Y with the value V ( P h. ) ( Y ) , where P h. is the number of units with Y ≤ y h . I. Valli Università degli Studi di Milano Bicocca 13 / 66

  14. Definitions and notation in the frequency distribution framework Let, { 0 ≤ y 1 < . . . < y h < . . . < y r } denote the set of the r distinct values assumed by the variate Y over the k subpopulations. It is possible to report the whole r × k bivariate distribution of the N units as shown in Table 2, where: n hg denotes the frequency of y h in the subpopulation g ; n h. = � k g =1 n hg is the frequency of y h in the whole population and n .g = � r h =1 n hg is the frequency of the subpopulation g . I. Valli Università degli Studi di Milano Bicocca 14 / 66

  15. Definitions and notation in the frequency distribution framework Tabella 2: Bivariate r × k distribution of the whole population partitioned into k subpopulations. Subpopulations 1 . . . g . . . k Total y 1 n 11 . . . n 1 g . . . n 1 k n 1 . . . . . . ... ... . . . . . . . . . . y h n h 1 . . . n hg . . . n hk n h. . . . . . ... ... . . . . . . . . . . y r n r 1 . . . n rg . . . n rk n r. Total n . 1 . . . n .g . . . n .k N I. Valli Università degli Studi di Milano Bicocca 15 / 66

  16. Definitions and notation in the frequency distribution framework Let us define, for the overall distribution { ( y h , n h. ) : h = 1 , . . . , r } : h � P h. = P h. ( Y ) = n t. , (8) t =1 h � Q h. ( Y ) = Q ( P h. ) ( Y ) = y t · n t. , (9) t =1 r � T ( Y ) = Q r. ( Y ) = y h · n h. (10) h =1 M h. ( Y ) = Q h. ( Y ) − . (11) P h. − Note that, M ( Y ) = M r. ( Y ) . I. Valli Università degli Studi di Milano Bicocca 16 / 66

  17. Definitions and notation in the frequency distribution framework � � For the distribution ( y h , n hg ) : h = 1 , . . . , r ; g = 1 , . . . , k , of the subpopulation g , let: h � P hg = P hg ( Y ) = n tg , (12) t =1 h � Q hg ( Y ) = Q ( Phg ) ( Y ) = y t · n tg , (13) t =1 r � T g ( Y ) = Q rg ( Y ) = y h · n hg , (14) h =1 T g M g ( Y ) = (15) n .g o ( g ) = min h : n hg > 0 (16)  y o ( g ) for h < o ( g ) −  M hg ( Y ) = Qhg ( Y ) , (17) for h ≥ o ( g )  Phg − where M hg ( Y ) in (17) denotes the mean of the first poorest P hg units. Note that, from (17) − and (15), follows M g ( Y ) = M rg ( Y ) . I. Valli Università degli Studi di Milano Bicocca 17 / 66

  18. Definitions and notation in the frequency distribution framework Note that, from (12) to (14), we can deduce the quantities defined in (8)-(11): k � P h. = P hg ( Y ) (18) g =1 k � Q h. = Q hg ( Y ) (19) g =1 k � T ( Y ) = T g ( Y ) (20) g =1 I. Valli Università degli Studi di Milano Bicocca 18 / 66

  19. Definitions and notation in the frequency distribution framework We can now define the Bonferroni inequality measures in the frequency distribution framework. From (9) we have: N V ′ ( Y ) = 1 � V ( i ) ( Y ) N i =1 r P h. = 1 � � V ( i ) ( Y ) . (21) N h =1 i =1+ P h. − n h. I. Valli Università degli Studi di Milano Bicocca 19 / 66

  20. Definitions and notation in the frequency distribution framework In order to assign same point inequality measure to units that have same value Y = y h , we set, for 1 + P h. − n h. ≤ i ≤ P h. : − V ( i ) ( Y ) = V ( P h. ) ( Y ) = M ( Y ) − M ( P h. ) ( Y ) M ( Y ) − = M ( Y ) − M h. ( Y ) M ( Y ) = V h ( Y ) (22) I. Valli Università degli Studi di Milano Bicocca 20 / 66

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend