deciding kleene algebra with converse is pspace complete
play

Deciding Kleene Algebra with converse is PSpace -complete Talk at - PowerPoint PPT Presentation

Introduction Deciding Kleene Algebra with converse is PSpace -complete Talk at the PACE meeting Paul Brunet & Damien Pous ENS de Lyon February 9 th , 2014 February 9 th , 2014 Paul Brunet (ENS de Lyon) 1 / 23 KAC is PSpace Introduction


  1. Introduction Deciding Kleene Algebra with converse is PSpace -complete Talk at the PACE meeting Paul Brunet & Damien Pous ENS de Lyon February 9 th , 2014 February 9 th , 2014 Paul Brunet (ENS de Lyon) 1 / 23 KAC is PSpace

  2. Introduction Introduction Kleene Algebra (i) : Abstraction for proving the equivalence of regular expressions. (i). Conway, J. H. (1971). Regular algebra and finite machines. Chapman and Hall Mathematics Series February 9 th , 2014 Paul Brunet (ENS de Lyon) 2 / 23 KAC is PSpace

  3. Introduction Introduction Kleene Algebra (i) : Abstraction for proving the equivalence of regular expressions. The equivalence is PSpace -complete . (i). Conway, J. H. (1971). Regular algebra and finite machines. Chapman and Hall Mathematics Series February 9 th , 2014 Paul Brunet (ENS de Lyon) 2 / 23 KAC is PSpace

  4. Introduction Introduction Kleene Algebra (i) : Abstraction for proving the equivalence of regular expressions. The equivalence is PSpace -complete . What if we add a converse operation to regular expressions ? (i). Conway, J. H. (1971). Regular algebra and finite machines. Chapman and Hall Mathematics Series February 9 th , 2014 Paul Brunet (ENS de Lyon) 2 / 23 KAC is PSpace

  5. Introduction Introduction e , f ∈ R eg X KA ⊢ e = f e ≡ R el f � e � = � f � ∨ e , f ∈ R eg X KAC ⊢ e = f e ≡ R el ∨ f cl ( � e � ) = cl ( � f � ) February 9 th , 2014 Paul Brunet (ENS de Lyon) 3 / 23 KAC is PSpace

  6. Introduction Introduction e , f ∈ R eg X KA ⊢ e = f e ≡ R el f � e � = � f � ∨ e , f ∈ R eg X KAC ⊢ e = f e ≡ R el ∨ f cl ( � e � ) = cl ( � f � ) February 9 th , 2014 Paul Brunet (ENS de Lyon) 3 / 23 KAC is PSpace

  7. Introduction Introduction e , f ∈ R eg X KA ⊢ e = f e ≡ R el f � e � = � f � ∨ e , f ∈ R eg X KAC ⊢ e = f e ≡ R el ∨ f cl ( � e � ) = cl ( � f � ) February 9 th , 2014 Paul Brunet (ENS de Lyon) 3 / 23 KAC is PSpace

  8. Introduction Introduction e , f ∈ R eg X KA ⊢ e = f e ≡ R el f � e � = � f � ∨ e , f ∈ R eg X KAC ⊢ e = f e ≡ R el ∨ f cl ( � e � ) = cl ( � f � ) February 9 th , 2014 Paul Brunet (ENS de Lyon) 3 / 23 KAC is PSpace

  9. Introduction Introduction e , f ∈ R eg X KA ⊢ e = f e ≡ R el f � e � = � f � ∨ e , f ∈ R eg X KAC ⊢ e = f e ≡ R el ∨ f cl ( � e � ) = cl ( � f � ) February 9 th , 2014 Paul Brunet (ENS de Lyon) 3 / 23 KAC is PSpace

  10. Introduction Plan Introduction 1 From Kleene Algebra with Converse to regular languages 2 Kleene Algebra wih converse Reduction to an automaton problem Closure of an automaton 3 The PSpace algorithm. 4 February 9 th , 2014 Paul Brunet (ENS de Lyon) 4 / 23 KAC is PSpace

  11. KAC Plan Introduction 1 From Kleene Algebra with Converse to regular languages 2 Kleene Algebra wih converse Reduction to an automaton problem Closure of an automaton 3 The PSpace algorithm. 4 February 9 th , 2014 Paul Brunet (ENS de Lyon) 5 / 23 KAC is PSpace

  12. KAC Kleene Algebra wih converse Regular expressions with converse Regular expressions with converse over X ∨ ) are Let X be a finite set, the set of regular expressions over X (written R eg X obtained with the grammar : e , f � 0 | 1 | x ∈ X | e + f | e · f | e ∗ | e ∨ February 9 th , 2014 Paul Brunet (ENS de Lyon) 6 / 23 KAC is PSpace

  13. KAC Kleene Algebra wih converse Regular expressions with converse Regular expressions with converse over X ∨ ) are Let X be a finite set, the set of regular expressions over X (written R eg X obtained with the grammar : e , f � 0 | 1 | x ∈ X | e + f | e · f | e ∗ | e ∨ A relational interpretation of regular expressions with converse over X can be specified by a domain S and a map S 2 � � σ : X −→ P We will write ∨ −→ P S 2 � � σ : R eg X ˆ for the unique morphism equal to σ on X . February 9 th , 2014 Paul Brunet (ENS de Lyon) 6 / 23 KAC is PSpace

  14. KAC Kleene Algebra wih converse Relational equivalence ∨ : For e , f ∈ R eg X e ≡ R el ∨ f means that S 2 � � ∀ S , ∀ σ : X → P , ˆ σ ( e ) = ˆ σ ( f ) . February 9 th , 2014 Paul Brunet (ENS de Lyon) 7 / 23 KAC is PSpace

  15. KAC Kleene Algebra wih converse A hint from the equational theory. ( a + b ) ∨ = a ∨ + b ∨ (1) ( a · b ) ∨ = b ∨ · a ∨ (2) ( a ∗ ) ∨ = ( a ∨ ) ∗ (3) a ∨∨ = a (4) a � aa ∨ a (5) February 9 th , 2014 Paul Brunet (ENS de Lyon) 8 / 23 KAC is PSpace

  16. KAC Kleene Algebra wih converse A hint from the equational theory. ( a + b ) ∨ = a ∨ + b ∨ (1) ( a · b ) ∨ = b ∨ · a ∨ (2) ( a ∗ ) ∨ = ( a ∨ ) ∗ (3) a ∨∨ = a (4) a � aa ∨ a (5) February 9 th , 2014 Paul Brunet (ENS de Lyon) 8 / 23 KAC is PSpace

  17. KAC Reduction ∨ to R eg X From R eg X Let X be a finite alphabet. For e ∈ R eg X , we write � e � ⊆ X ∗ for the language denoted by e . X ′ ≔ { x ′ | x ∈ X } is a disjoint copy of X , and X ≔ X ∪ X ′ . February 9 th , 2014 Paul Brunet (ENS de Lyon) 9 / 23 KAC is PSpace

  18. KAC Reduction ∨ to R eg X From R eg X Let X be a finite alphabet. For e ∈ R eg X , we write � e � ⊆ X ∗ for the language denoted by e . X ′ ≔ { x ′ | x ∈ X } is a disjoint copy of X , and X ≔ X ∪ X ′ . We see equations (1)-(4) as rewriting rules : 1 ( a + b ) ∨ �−→ a ∨ + b ∨ ( a · b ) ∨ �−→ b ∨ · a ∨ ( a ∗ ) ∨ �−→ ( a ∨ ) ∗ a ∨∨ �−→ a 1 ∨ �−→ 1 0 ∨ �−→ 0 February 9 th , 2014 Paul Brunet (ENS de Lyon) 9 / 23 KAC is PSpace

  19. KAC Reduction ∨ to R eg X From R eg X Let X be a finite alphabet. For e ∈ R eg X , we write � e � ⊆ X ∗ for the language denoted by e . X ′ ≔ { x ′ | x ∈ X } is a disjoint copy of X , and X ≔ X ∪ X ′ . We see equations (1)-(4) as rewriting rules : 1 ( a + b ) ∨ �−→ a ∨ + b ∨ ( a · b ) ∨ �−→ b ∨ · a ∨ ( a ∗ ) ∨ �−→ ( a ∨ ) ∗ a ∨∨ �−→ a 1 ∨ �−→ 1 0 ∨ �−→ 0 We substitute x ∨ with x ′ in the result. We get e ∈ R eg X . 2 February 9 th , 2014 Paul Brunet (ENS de Lyon) 9 / 23 KAC is PSpace

  20. KAC Reduction Reduction relation a � aa ∨ a w For a word w ∈ X ∗ , we define inductively w : x ≔ x ′ ∀ x ∈ X , ǫ ≔ ǫ ∀ x ′ ∈ X ′ , x ′ ≔ x wx ≔ x w February 9 th , 2014 Paul Brunet (ENS de Lyon) 10 / 23 KAC is PSpace

  21. KAC Reduction Reduction relation a � aa ∨ a w For a word w ∈ X ∗ , we define inductively w : x ≔ x ′ ∀ x ∈ X , ǫ ≔ ǫ ∀ x ′ ∈ X ′ , x ′ ≔ x wx ≔ x w u � v u 1 · www · u 2 u 1 · w · u 2 � Example : abbabb ′ a ′ abbaa ′ February 9 th , 2014 Paul Brunet (ENS de Lyon) 10 / 23 KAC is PSpace

  22. KAC Reduction Reduction relation a � aa ∨ a w For a word w ∈ X ∗ , we define inductively w : x ≔ x ′ ∀ x ∈ X , ǫ ≔ ǫ ∀ x ′ ∈ X ′ , x ′ ≔ x wx ≔ x w u � v u 1 · www · u 2 u 1 · w · u 2 � Example : abbabb ′ a ′ abbaa ′ = abb · ab · b ′ a ′ · ab · baa ′ February 9 th , 2014 Paul Brunet (ENS de Lyon) 10 / 23 KAC is PSpace

  23. KAC Reduction Reduction relation a � aa ∨ a w For a word w ∈ X ∗ , we define inductively w : x ≔ x ′ ∀ x ∈ X , ǫ ≔ ǫ ∀ x ′ ∈ X ′ , x ′ ≔ x wx ≔ x w u � v u 1 · www · u 2 u 1 · w · u 2 � Example : abbabb ′ a ′ abbaa ′ = abb · ab · b ′ a ′ · ab · baa ′ = abb · ab · ab · ab · baa ′ February 9 th , 2014 Paul Brunet (ENS de Lyon) 10 / 23 KAC is PSpace

  24. KAC Reduction Reduction relation a � aa ∨ a w For a word w ∈ X ∗ , we define inductively w : x ≔ x ′ ∀ x ∈ X , ǫ ≔ ǫ ∀ x ′ ∈ X ′ , x ′ ≔ x wx ≔ x w u � v u 1 · www · u 2 u 1 · w · u 2 � Example : abbabb ′ a ′ abbaa ′ = abb · ab · b ′ a ′ · ab · baa ′ = abb · ab · ab · ab · baa ′ � abb · ab · baa ′ February 9 th , 2014 Paul Brunet (ENS de Lyon) 10 / 23 KAC is PSpace

  25. KAC Reduction Closure cl ( L ) cl ( L ) ≔ { v | ∃ u ∈ L : u � ∗ v } February 9 th , 2014 Paul Brunet (ENS de Lyon) 11 / 23 KAC is PSpace

  26. KAC Reduction Closure cl ( L ) cl ( L ) ≔ { v | ∃ u ∈ L : u � ∗ v } Theorem a a . Bloom, S. L., Ésik, Z., and Stefanescu, G. (1995). Notes on equational theories of relations. Algebra Universalis , 33(1) :98–126 e ≡ R el ∨ f ⇔ cl ( � e � ) = cl ( � f � ) February 9 th , 2014 Paul Brunet (ENS de Lyon) 11 / 23 KAC is PSpace

  27. Construction Plan Introduction 1 From Kleene Algebra with Converse to regular languages 2 Kleene Algebra wih converse Reduction to an automaton problem Closure of an automaton 3 The PSpace algorithm. 4 February 9 th , 2014 Paul Brunet (ENS de Lyon) 12 / 23 KAC is PSpace

  28. Construction Problem Input : an automaton A an automaton A ′ such that L ( A ′ ) = cl ( L ( A )) . Output : February 9 th , 2014 Paul Brunet (ENS de Lyon) 13 / 23 KAC is PSpace

  29. Construction Intuition a ′ a a 0 1 2 3 February 9 th , 2014 Paul Brunet (ENS de Lyon) 14 / 23 KAC is PSpace

  30. Construction Intuition a a ′ a a 0 1 2 3 February 9 th , 2014 Paul Brunet (ENS de Lyon) 14 / 23 KAC is PSpace

  31. Construction Intuition a a ′ a a 0 1 2 3 b ′ a ′ a b a b 0 1 2 3 4 5 6 February 9 th , 2014 Paul Brunet (ENS de Lyon) 14 / 23 KAC is PSpace

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend