decay colliders i
play

-Decay & Colliders I M.J. Ramsey-Musolf U Mass Amherst - PowerPoint PPT Presentation

TeV Scale LNV: 0 -Decay & Colliders I M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ Collaborators: Tao Peng, Peter Winslow; V. Cirigliano, M. Graesser, M. Horoi, P. Vogel ACFI Neutrino Workshop July 2017


  1. TeV Scale LNV: 0 νβ νββ -Decay & Colliders I M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ Collaborators: Tao Peng, Peter Winslow; V. Cirigliano, M. Graesser, M. Horoi, P. Vogel ACFI Neutrino Workshop July 2017 � 1

  2. This talk: beyond the “poster child” 2

  3. This talk: beyond the “poster child” 3

  4. Themes for This Talk 4

  5. Low-Energy / High-Energy Interplay Discovery “Diagnostic” Low energy High energy 5

  6. Low-Energy / High-Energy Interplay Discovery “Diagnostic” Low energy High energy 6

  7. Low-Energy / High-Energy Interplay Discovery “Diagnostic” Low energy High energy 7

  8. Low-Energy / High-Energy Interplay Discovery “Diagnostic” ? Low energy High energy 8

  9. νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana e − e − LNV Physics ( ) ( ) A Z , N A Z − 2, N + 2 9 36

  10. νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Impact of observation e − e − • Total lepton number not conserved at classical level • New mass scale in nature, Λ LNV Physics • Key ingredient for standard baryogenesis via leptogenesis ( ) ( ) A Z , N A Z − 2, N + 2 10 36

  11. Ton Scale Experiments 11 J. Wilkerson INT DBD Program June 2017

  12. νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Impact of observation e − e − What’s • Total lepton number not inside ? conserved at classical level • New mass scale in nature, Λ LNV Physics • Key ingredient for standard baryogenesis via leptogenesis ( ) ( ) A Z , N A Z − 2, N + 2 12 12

  13. LNV: Discoverable at the Energy Frontier LHC International Linear Collider ATLAS CMS Future Circular e + e - & pp Future Circular e + e - & pp Thanks: S. Gascon- Shotkin 13

  14. Outline I. The “Standard Mechanism”: High Scale LNV II. TeV Scale LNV III. Simplified Models: Connecting DBD & Colliders IV. Summary V. Sub Weak Scale LNV (back up) 14

  15. I. “St’d Mechanism”: High Scale LNV 15

  16. LNV Mass Scale & 0 νβ νββ -Decay Underlying A(Z,N) ! ! A(Z+2, N-2) + e - e - Physics • 3 light neutrinos only: source of neutrino mass at the very high see-saw scale • 3 light neutrinos with TeV scale source of neutrino mass • > 3 light neutrinos 16

  17. LNV Mass Scale & 0 νβ νββ -Decay Underlying A(Z,N) ! ! A(Z+2, N-2) + e - e - Physics • 3 light neutrinos only: source of neutrino mass at the very high see-saw scale • 3 light neutrinos with TeV scale source of neutrino mass • > 3 light neutrinos 17

  18. νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana “Standard” Mechanism e − e − • Light Majorana mass generated ν M at the conventional see-saw scale: Λ ~ 10 12 – 10 15 GeV W − W − • 3 light Majorana neutrinos mediate decay process ( ) ( ) A Z , N A Z − 2, N + 2 18 18

  19. High Scale LNV Three active light neutrinos Effective DBD neutrino mass (eV) Current generation Current generation Ton Scale Inverted Normal Lightest neutrino mass (eV ) ! 19

  20. Details See F. Deppisch talk…. 20

  21. II. TeV Scale LNV 21

  22. LNV Mass Scale & 0 νβ νββ -Decay Underlying A(Z,N) ! ! A(Z+2, N-2) + e - e - Physics • 3 light neutrinos only: source of neutrino mass at the very high see-saw scale • 3 light neutrinos with TeV scale source of neutrino mass • > 3 light neutrinos Two parameters: Effective coupling & effective heavy particle mass 22

  23. νββ -Decay: LNV? Mass Term? 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV LNV Mechanism e − e − • Majorana mass generated at the TeV scale F • Low-scale see-saw • Radiative m ν S S • m MIN << 0.01 eV but 0 νββ -signal accessible with tonne-scale exp’ts due to heavy Majorana ( ) ( ) A Z , N A Z − 2, N + 2 particle exchange 23 23

  24. TeV LNV & Leptogenesis 10 12 Standard thermal lepto Energy Scale (GeV) Deppisch et Fast Δ L = 2 int: erase L 10 3 al ‘14, ‘15 10 2 10 -1 24

  25. TeV LNV & Leptogenesis 10 12 Standard thermal lepto Energy Scale (GeV) Deppisch et Fast Δ L = 2 int: erase L 10 3 al ‘14, ‘15 Electroweak, resonant lepto, 10 2 WIMPY baryo, ARS lepto… 10 -1 Post-sphaleron, cold… Baryogenesis alternatives 25

  26. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 26

  27. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 SUSY: R Parity-Violation d d e e ~ ~ Sfermion q , l ~ ~ ~ F V F ~ Gaugino g , χ Majorana u u 27

  28. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana General Classification: Helo et al, PRD 88.011901, 88.073011 LRSM: Low-scale See-Saw e e Mass: standard see-saw but TeV W R N R W R scale + many other diagrams 28

  29. νββ -Decay: TeV Scale LNV 0 νβ LHC: SS Dilepton + Dijet L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana LHC Production & 0 νββ -Decay 76 Ge τ (0 ν ) LHC exclusion Helo et al, PRD 88.011901, 88.073011 29

  30. III. Simplified Models MRM LNV Dog Race 30

  31. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV Scale LNV d u Can it be discovered e − 0 νββ - decay with combination of e − νββ & LHC searches ? 0 νβ d u d u Simplified models S + e − LHC: pp ! jj e - e - F 0 e − S + 31 d u

  32. Simplified Models: Illustrative Case • General considerations for collider - 0 νβ νββ decay interface 32

  33. Simplified Models: Illustrative Case S: (1, 2, ½ ) F: (1, 0, 0) Majorana 33

  34. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Helo et al claim: g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Fig. 11 S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 34 ;

  35. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Helo et al claim: EXO exclusion g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Future Xe: T 1/2 > 10 27 yr Fig. 11 S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 35 ;

  36. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Helo et al claim: EXO exclusion LHC: pp ! jj e - e - g eff ð S Þ ¼ ð g 1 g 2 Þ 1 = 2 : Future Xe: T 1/2 > 10 27 yr 300 fb -1 : < 3 events Fig. 11 S m c Þ 1 = 5 ; M eff ð S Þ ¼ ð m 4 g 36 ;

  37. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana TeV Scale LNV d u Comparing 0 νββ & LHC e − sensitivities (our work): 0 νββ - decay e − • LHC backgrounds d u • Running effective op’s to low energy d u S + • Matching onto hadronic d.o.f. e − • Long range NME LHC: pp ! jj e - e - F 0 contributions e − S + 37 d u

  38. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: • Charge flip • Jet faking electron 38

  39. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: g e + e - Z • Charge flip e + • Jet faking electron e - g e + transfers most of p T to conversion e - ; Z / γ * + jets ! apparent e - e - jj event 39

  40. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: Bin in η and apply charge flip prob 40

  41. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Backgrounds: Jet fakes (e.g., π + looks like e + ) 41

  42. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Cuts Backgrounds: • H T • MET • M ll 42 41

  43. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Cuts Backgrounds: 43 T. Peng, MRM, P. Winslow 1508.04444

  44. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Low energy: Matching d u d u Match onto O eff at Λ BSM S + e − e − F 0 e − e − S + d u d u 0 νββ -decay as fu g g e ff = C 1 ( Λ ) 1 / 4 . We use a prospec 44

  45. νββ -Decay: TeV Scale LNV 0 νβ L mass = y ¯ L mass = y ¯ L ˜ L c HH T L + h . c . H ν R + h . c . Λ Dirac Majorana Low energy: Running 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend