decal dmaps s ensors for d igital e lectromagnetic c
play

DECAL: DMAPS S ENSORS FOR D IGITAL E LECTROMAGNETIC C ALORIMETRY S - PowerPoint PPT Presentation

DECAL: DMAPS S ENSORS FOR D IGITAL E LECTROMAGNETIC C ALORIMETRY S TEVE W ORM A , P. A LLPORT A , R. B OSLEY A , L. C HEN B , J. D OPKE B , S. F LYNN A , L. G ONELLA A , I. K OPSALIS A , K. N IKOLOPOULOS A , P. P HILLIPS B , T. P RICE A , I. S


  1. DECAL: DMAPS S ENSORS FOR D IGITAL E LECTROMAGNETIC C ALORIMETRY S TEVE W ORM A , P. A LLPORT A , R. B OSLEY A , L. C HEN B , J. D OPKE B , S. F LYNN A , L. G ONELLA A , I. K OPSALIS A , K. N IKOLOPOULOS A , P. P HILLIPS B , T. P RICE A , I. S EDGWICK B , G. V ILLANI B , N. W ATSON A , M. W ARREN C , F. W ILSON B , A. W INTER A , Z. Z HANG B A U NIVERSITY OF B IRMINGHAM B STFC R UTHERFORD A PPLETON C U NIVERSITY C OLLEGE L ONDON M AY 29, 2018

  2. O UTLINE AND O VERVIEW • IntroducIon: Calorimetry with silicon readout – Analogue (e.g. CALICE, CMS HGCAL) – Digital (e.g. SPiDER, ALICE FoCal) • SimulaIon results: Single parIcle resoluIons • Sensor R&D: Reconfigurable radiaIon-hard DMAPS • Conclusions Analogue: Sum energy deposited in a cell Digital: Sum the number of particles in a cell 2

  3. D IGITAL C ALORIMETRY : T EST BEAMS [Rocco et al, ICHEP 2016] • SPiDeR: pixel counIng gives correct shower shape – CERN testbeam using EU Telescope (Mimosa-26) – Tracks in first 3 layers, shower in W, measure core in 4th layer 15 cm from W • Digital Calo Example: ALICE FoCal – High granularity to separate showers – DESY & SPS test beams: 24 plane prototype; four Mimosa-23 (30 μm Pitch) with W 3

  4. A NALOGUE R EADOUT • Detector ConfiguraIon – Concentric octagonal geometry Linearity – 50 layers of 0.6 X 0 W – 5x5 mm 2 pixels – 300 μm thick sensiIve region Resolution 5x5 mm 2 Pads • PandoraPFA* gives jet energy resoluIon of <4% for jets up to 250 GeV Excellent linearity, resolu=on possible [*hlps://arxiv.org/abs/0907.3577] 4

  5. D IGITAL R EADOUT • Detector ConfiguraIons – Concentric cylinder geometry – 50x50 μm 2 pixels – 18 μm thick epitaxial region ▼ 50 layers of 0.6 X 0 W ○ 30 layers of 1.0 X 0 W ☐ 50 layers of 0.6 X 0 Pb � 30 layers of 1.0 X 0 Pb • MIP MPV ~1400 e- with threshold of 480 • For 50 layers of Tungsten, energy linear up to ~300 GeV 5

  6. D IGITAL R EADOUT • Octagonal barrel geometry – 50 layers of 0.6 X 0 W Linearity – 50x50 μm 2 digital pixels – 5x5 mm 2 counIng pads – 18 μm thick epitaxial region – 3 mm air for PCB, services, etc Resolution 50x50 µ m 2 Pixels Good performance for realis=c geometry 6

  7. N ON -L INEARITY AND MVA • Can you recover linearity in soqware? – MVA package: LinearDiscriminant, MulI-Layer Perceptron (ANN) – Simulated DECAL: energy range 10 - 1000 GeV, 50 layers 2.1 mm W – Input: number of pixel hits per layer, grouped in 5 layers (1-5, 6-10, etc) Linearity recovered over full range (to 1 TeV) 7

  8. DECAL P ILEUP S TUDIES • Simulated pile-up using Pythia min bias events – ⟨ µ ⟩ =1000 yields 3.5M pixels above threshold in DECAL barrel – Energy in first layer vs eta follows same trend as FCC-hh LAr baseline studies – Pixels above threshold vs eta also have similar trend decal_ParticlesPerEta_layer1 decal_ParticlesPerEta_layer1 • 500 GeV e - ; 50k hit pixels swamped by pileup Edep / 0.1 eta / event Entries Entries 290 290 0.16 Mean Mean 1.015 1.015 0.16 Mean y Mean y 0.04408 0.04408 E / 0.1eta / event Std Dev Std Dev 0.5857 0.5857 0.14 Std Dev y 0.03913 Std Dev y 0.03913 – First alempts at reducing hits very promising 0.12 0.12 0.1 – ALL PIXELS, MAX_STAVE, 10k ROI, TRUTH ⟨ µ ⟩ =0 0.08 0.08 0.06 – Simple cuts reduce BG by orders of magnitude 0.04 0.04 0.02 0 • Next: careful study with clustering, energy resoluIon 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.4 0.8 1.2 1.6 2.0 Eta Eta decal_ParticlesPerEta_layer1 decal_ParticlesPerEta_layer1 Pixels / 0.1 eta / event Entries Entries 290 290 pixels / 0.1eta / event 8000 Mean Mean 1.015 1.015 8000 10 5 Mean y Mean y 2632 2632 Std Dev Std Dev 0.5857 0.5857 7000 Std Dev y Std Dev y 2029 2029 pixels / layer 10 4 6000 6000 5000 10 3 4000 4000 10 2 3000 2000 2000 10 1000 0 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 10 2 0 30 40 50 0 0.4 0.8 1.2 1.6 2.0 Eta Layer Eta 8

  9. DECAL T EST S ENSOR • DECAL monolithic acIve pixel test sensor features – Reconfigurable: strip mode for parIcle tracking, or pad mode (counts above threshold) for digital calorimetry – TowerJazz 180 nm, 18 μm epi, standard (opIcal) process – 5 mm 2 pixel matrix of 64×64 pixels with pitch of 55×55 μm 2 • Sensor matrix now under test – Four collecIon electrodes/pixel – Trim, preamp, shaper, discriminator – 25 ns digital output – Analog and digital tests ongoing Sensor shows analogue response (works!) 9

  10. DECAL A RRAY : S TRIP M ODE • Strip Mode (1 x 64 pixel array) – Counts above threshold: 0, 1, 2 or >3 per column – Data rate: 320 Mbit/s x 16 = 4.8 Gbit/s Test Data Shift Register Calibration Shift Register 64 strip array Bias Mapping (64 x 64 pixels) Collated Column Outputs PLL Strip Logic Pad Logic 10 LVDS Output

  11. DECAL A RRAY : P AD M ODE • Pad Mode (16 x 64 pixel array) – Up to 15 hits in each of 16 columns (240 total) – Lower rate; about 1/4 the LVDS lines Test Data Shift Register Calibration Shift Register 64 x 64 4 pad array pixel array Bias Mapping (each 16 columns wide) Collated Column Outputs PLL Strip Logic Pad Logic 11 LVDS Output

  12. DECAL P IXEL 2V 4V 6V 8V 10V Single pixel field: DC Vbias 2 to 10V, without back contact • TowerJazz 180 nm standard (opIcal) process; 18 μm epi – Four collecIon nodes, low capacitance, expect good signal/noise – OperaIonal with 1-2 volts bias; higher voltage for faster collecIon • TowerJazz “modified process” also under invesIgaIon – Test structures submiled in modified TowerJazz process [NIM A V871, 90-96, 2017] – Full depleIon, low capacitance and good signal/noise demonstrated – Rad hard to few 10 15 neutron equiv. [JINST 12 P06008, 2017] Poster: H. Pernegger Talk: K. Moustakas 12

  13. DECAL D ATA A CQUISITION AND S OFTWARE • DECAL Data AcquisiIon via NEXYS Video board (Digilent) • Soqware is based on ATLAS ITSDAQ • NEXYS board is programmed using Adept 13

  14. DECAL: S TRIP M ODE D IGITAL L OGIC • OperaIng the chip in strip mode: – Inject 3 (binary 11), and shiq along the strips – Inject 3 (11), then 2 (10), then 1 (01), shiq along the strips Digital logic for strip mode works as expected Inject number 3 (11) Inject numbers 3, 2, 1 in the 1 st strip in the 1 st , 2 nd and 3 rd strip 14

  15. DECAL: P AD M ODE D IGITAL L OGIC • OperaIng the chip in pad mode: – Inject the numbers 3, 2, 1 and shiqing along the strips – Compare the injected numbers 3, 2, 1 to the total sum of each output block Digital logic for pad mode also works as expected Inject numbers 3, 2, 1 Inject numbers 3, 2, 1 in the 1 st , 2 nd and 3 rd strip and total sum 15

  16. A NALOGUE P IXEL T EST • Laser illuminaIon for analogue pixel in the top leq corner (2 nd row 2 nd column) • Laser-inject charge, observe the outputs of the test pixel • Preamplifier, shaper signals & laser trigger measured 16

  17. A NALOGUE P IXEL T EST • Analogue tesIng of single pixels ge~ng started – Tests vs bias (e.g. 1 or 2 V, below), linearity, etc – Laser scan across matrix – Source tesIng & TCT planned 17

  18. C ONCLUSIONS DECAL silicon calorimeter designs are progressing: • High granularity should allow excellent PFA • Pixel counIng gives good energy resoluIon at intermediate energies • Problems from pileup and mulIple hits can be miIgated by MVA, clustering • Prototype reconfigurable CMOS DMAPS for ECAL, pre-shower, and outer tracking fabricated at TowerJazz and under evaluaIon • Digital logic works (configurable), analogue now under test 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend