dealing with hamiltonian structure challenges and
play

Dealing with Hamiltonian Structure: Challenges and Successes David - PowerPoint PPT Presentation

Dealing with Hamiltonian Structure: Challenges and Successes David S. Watkins watkins@math.wsu.edu Department of Mathematics Washington State University Cortona, September 2008 p. 1 Alternating Pencils Cortona, September 2008 p. 2


  1. Working Directly with the Pencil Hamiltonian ⇔ alternating pencil M − λN symplectic ⇔ palindromic pencil G − λG T Schröder (Ph.D. 2008) Kressner/Schröder/Watkins (2008) Cortona, September 2008 – p. 10

  2. Working with Hamiltonian Matrices Cortona, September 2008 – p. 11

  3. Working with Hamiltonian Matrices symplectic matrix: S T JS = J Cortona, September 2008 – p. 11

  4. Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations Cortona, September 2008 – p. 11

  5. Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations orthogonal symplectic transformations Cortona, September 2008 – p. 11

  6. Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations orthogonal symplectic transformations isotropic subspace : U T JU = 0 Cortona, September 2008 – p. 11

  7. Working with Hamiltonian Matrices symplectic matrix: S T JS = J symplectic similarity transformations orthogonal symplectic transformations isotropic subspace : U T JU = 0 isotropy and symplectic matrices Cortona, September 2008 – p. 11

  8. Difficulty Obtaining Hessenberg Form Cortona, September 2008 – p. 12

  9. Difficulty Obtaining Hessenberg Form PVL form (1981) Cortona, September 2008 – p. 12

  10. Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Cortona, September 2008 – p. 12

  11. Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers (1983) Cortona, September 2008 – p. 12

  12. Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers (1983) getting an isotropic Krylov subspace? Cortona, September 2008 – p. 12

  13. Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers (1983) getting an isotropic Krylov subspace? Ammar/Mehrmann (1991) Cortona, September 2008 – p. 12

  14. Difficulty Obtaining Hessenberg Form PVL form (1981) the desired Hessenberg form Byers (1983) getting an isotropic Krylov subspace? Ammar/Mehrmann (1991) new ideas needed Cortona, September 2008 – p. 12

  15. Skew-Hamiltonian matrices . . . Cortona, September 2008 – p. 13

  16. Skew-Hamiltonian matrices . . . . . . are easier Cortona, September 2008 – p. 13

  17. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : Cortona, September 2008 – p. 13

  18. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : H 2 Cortona, September 2008 – p. 13

  19. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : H 2 more and bigger invariant subspaces Cortona, September 2008 – p. 13

  20. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : H 2 more and bigger invariant subspaces Krylov subspaces are automatically isotropic. Cortona, September 2008 – p. 13

  21. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : H 2 more and bigger invariant subspaces Krylov subspaces are automatically isotropic. reduction to Hessenberg form Cortona, September 2008 – p. 13

  22. Skew-Hamiltonian matrices . . . . . . are easier ( JK ) T = − ( JK ) skew-Hamiltonian matrix : H 2 more and bigger invariant subspaces Krylov subspaces are automatically isotropic. reduction to Hessenberg form make use of H 2 Cortona, September 2008 – p. 13

  23. Symplectic URV Decomposition Cortona, September 2008 – p. 14

  24. Symplectic URV Decomposition H = UR 1 V T = V R 2 U T Cortona, September 2008 – p. 14

  25. Symplectic URV Decomposition H = UR 1 V T = V R 2 U T � − T � S B T � � B R 1 = and R 2 = 0 T T − S T 0 Cortona, September 2008 – p. 14

  26. Symplectic URV Decomposition H = UR 1 V T = V R 2 U T � − T � S B T � � B R 1 = and R 2 = 0 T T − S T 0 H 2 Cortona, September 2008 – p. 14

  27. Symplectic URV Decomposition H = UR 1 V T = V R 2 U T � − T � S B T � � B R 1 = and R 2 = 0 T T − S T 0 H 2 eigenvalues of H Cortona, September 2008 – p. 14

  28. Symplectic URV Decomposition H = UR 1 V T = V R 2 U T � − T � S B T � � B R 1 = and R 2 = 0 T T − S T 0 H 2 eigenvalues of H Benner/Mehrmann/Xu (199X) Cortona, September 2008 – p. 14

  29. CLM Method Cortona, September 2008 – p. 15

  30. CLM Method Chu/Liu/Mehrmann (2004) Cortona, September 2008 – p. 15

  31. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU Cortona, September 2008 – p. 15

  32. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. Cortona, September 2008 – p. 15

  33. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. span { e 1 } invariant under H 2 Cortona, September 2008 – p. 15

  34. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. span { e 1 } invariant under H 2 ⇒ span { e 1 , He 1 } invariant under H Cortona, September 2008 – p. 15

  35. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. span { e 1 } invariant under H 2 ⇒ span { e 1 , He 1 } invariant under H Extract 1-D isotropic invariant subspace. Cortona, September 2008 – p. 15

  36. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. span { e 1 } invariant under H 2 ⇒ span { e 1 , He 1 } invariant under H Extract 1-D isotropic invariant subspace. Build an orthogonal symplectic similarity transformation. Cortona, September 2008 – p. 15

  37. CLM Method Chu/Liu/Mehrmann (2004) H ← U T HU H 2 has special structure. span { e 1 } invariant under H 2 ⇒ span { e 1 , He 1 } invariant under H Extract 1-D isotropic invariant subspace. Build an orthogonal symplectic similarity transformation. Deflate. (many details skipped) Cortona, September 2008 – p. 15

  38. Block CLM Method Cortona, September 2008 – p. 16

  39. Block CLM Method CLM works surprisingly well. Cortona, September 2008 – p. 16

  40. Block CLM Method CLM works surprisingly well. difficulties with clusters Cortona, September 2008 – p. 16

  41. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Cortona, September 2008 – p. 16

  42. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) Cortona, September 2008 – p. 16

  43. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 Cortona, September 2008 – p. 16

  44. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span {S , H S} invariant under H Cortona, September 2008 – p. 16

  45. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span {S , H S} invariant under H Extract k -dimensional isotropic invariant subspace. Cortona, September 2008 – p. 16

  46. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span {S , H S} invariant under H Extract k -dimensional isotropic invariant subspace. This is Cortona, September 2008 – p. 16

  47. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span {S , H S} invariant under H Extract k -dimensional isotropic invariant subspace. This is more robust, Cortona, September 2008 – p. 16

  48. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span {S , H S} invariant under H Extract k -dimensional isotropic invariant subspace. This is more robust, more efficient, Cortona, September 2008 – p. 16

  49. Block CLM Method CLM works surprisingly well. difficulties with clusters Block CLM, Mehrmann/Schröder/Watkins (2008) S invariant under H 2 ⇒ span {S , H S} invariant under H Extract k -dimensional isotropic invariant subspace. This is more robust, more efficient, but we’re still working on it. Cortona, September 2008 – p. 16

  50. Cortona, September 2008 – p. 17

  51. Cortona, September 2008 – p. 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend