critical values in an anisotropic percolation model
play

Critical values in an anisotropic percolation model Hao Xue EPF - - PowerPoint PPT Presentation

Critical values in an anisotropic percolation model Hao Xue EPF - Lausanne (Based on joint work with T. Mountford and M.E. Vares) 23rd EBP - July 2019 1 / 11 Overview Basic model on Z 1+1 Supercritical/ higher dimensions Z d +1 (on going) 2


  1. Critical values in an anisotropic percolation model Hao Xue EPF - Lausanne (Based on joint work with T. Mountford and M.E. Vares) 23rd EBP - July 2019 1 / 11

  2. Overview Basic model on Z 1+1 Supercritical/ higher dimensions Z d +1 (on going) 2 / 11

  3. Related works A model investigated by Fontes, Marchetti, Merola, Presutti, Vares: ± 1 spins σ ( x , i ) , x ∈ Z , i ∈ Z s.t. 3 / 11

  4. Related works A model investigated by Fontes, Marchetti, Merola, Presutti, Vares: ± 1 spins σ ( x , i ) , x ∈ Z , i ∈ Z s.t. ◮ Horizontal interaction with strength γ and range 1 /γ : On i -th horizontal level, it follows a Kac potential − 1 � 2 J γ ( x , y ) σ ( x , i ) σ ( y , i ) , J γ ( x , y ) = 1 , y � = x where J γ = c γ γ J ( γ ( x − y )) and J ( r ) , r ∈ R is smooth and symmetric � J ( r ) dr = 1, c γ is the with support in [ − 1 , 1] , J (0) > 0 , normalization constant that tends to 1 as γ → 0. 3 / 11

  5. Related works A model investigated by Fontes, Marchetti, Merola, Presutti, Vares: ± 1 spins σ ( x , i ) , x ∈ Z , i ∈ Z s.t. ◮ Horizontal interaction with strength γ and range 1 /γ : On i -th horizontal level, it follows a Kac potential − 1 � 2 J γ ( x , y ) σ ( x , i ) σ ( y , i ) , J γ ( x , y ) = 1 , y � = x where J γ = c γ γ J ( γ ( x − y )) and J ( r ) , r ∈ R is smooth and symmetric � J ( r ) dr = 1, c γ is the with support in [ − 1 , 1] , J (0) > 0 , normalization constant that tends to 1 as γ → 0. ◮ Vertical interaction between nearest neighbours with strength ǫ ( γ ). − ǫσ ( x , i ) σ ( x , i + 1) . 3 / 11

  6. Related works (cont’d) Question : How small ǫ is to still observe a phase transition for the anisotropic Ising model (for all γ small)? 4 / 11

  7. Related works (cont’d) Question : How small ǫ is to still observe a phase transition for the anisotropic Ising model (for all γ small)? Conjecture ǫ ( γ ) = κγ 2 / 3 . 4 / 11

  8. Related works (cont’d) Question : How small ǫ is to still observe a phase transition for the anisotropic Ising model (for all γ small)? Conjecture ǫ ( γ ) = κγ 2 / 3 . Ising ⇒ FK percolation with q = 2: p ( � v 1 , v 2 � ) = 1 − e − J γ ( x , y ) 1 � v 1 , v 2 �∈ E h − e − 2 ǫ ( γ ) 1 � v 1 , v 2 �∈ E v . FK measure: 1 Z ( G , p , q ) p | ω | (1 − p ) | E \ ω | q k ( ω ) . P ( ω ) = 4 / 11

  9. Basic model Graph Z 2 = ( V , E ), V = { ( x , i ) : x ∈ Z , i ∈ Z } , E = E h ∪ E v , s.t. 5 / 11

  10. Basic model Graph Z 2 = ( V , E ), V = { ( x , i ) : x ∈ Z , i ∈ Z } , E = E h ∪ E v , s.t. ◮ Horizontal edges E h = { e = � v 1 , v 2 � : 1 ≤ | x 1 − x 2 | ≤ N , i 1 = i 2 } . λ Open probability 2 N ; critical case: λ = 1. 5 / 11

  11. Basic model Graph Z 2 = ( V , E ), V = { ( x , i ) : x ∈ Z , i ∈ Z } , E = E h ∪ E v , s.t. ◮ Horizontal edges E h = { e = � v 1 , v 2 � : 1 ≤ | x 1 − x 2 | ≤ N , i 1 = i 2 } . λ Open probability 2 N ; critical case: λ = 1. ◮ Vertical edges E v = { e = � v 1 , v 2 � : x 1 = x 2 , | i 1 − i 2 | = 1 } . Open probability ǫ ( N ) = κ N − b . 5 / 11

  12. Basic model Graph Z 2 = ( V , E ), V = { ( x , i ) : x ∈ Z , i ∈ Z } , E = E h ∪ E v , s.t. ◮ Horizontal edges E h = { e = � v 1 , v 2 � : 1 ≤ | x 1 − x 2 | ≤ N , i 1 = i 2 } . λ Open probability 2 N ; critical case: λ = 1. ◮ Vertical edges E v = { e = � v 1 , v 2 � : x 1 = x 2 , | i 1 − i 2 | = 1 } . Open probability ǫ ( N ) = κ N − b . ◮ Initial open sites at layer 0: 2 N 2 α on {− N 1+ α , · · · , 0 , · · · , N 1+ α } with distance N 1 − α 5 / 11

  13. Picutre Figure: Anisotropic percolation on Z 2 6 / 11

  14. Horizontal Rescale the horizontal space by N 1+ α and its horizontal time step by N 2 α 7 / 11

  15. Horizontal Rescale the horizontal space by N 1+ α and its horizontal time step by N 2 α ξ n ( · ) : Z / N 1+ α → { 0 , 1 } . ◮ ˆ 7 / 11

  16. Horizontal Rescale the horizontal space by N 1+ α and its horizontal time step by N 2 α ξ n ( · ) : Z / N 1+ α → { 0 , 1 } . ◮ ˆ ◮ � ξ j ( x ) = 0 and � N k ( x ) if � j ≤ k ˆ w =1 η w 1 k +1 ≥ 1 ˆ ξ k +1 ( x ) = 0 otherwise , i.i.d. where N k ( x ) = � y ∼ x ˆ ξ k ( y ) , η w ∼ Bernoulli(1 / 2 N ). k +1 7 / 11

  17. Horizontal Rescale the horizontal space by N 1+ α and its horizontal time step by N 2 α ξ n ( · ) : Z / N 1+ α → { 0 , 1 } . ◮ ˆ ◮ � ξ j ( x ) = 0 and � N k ( x ) if � j ≤ k ˆ w =1 η w 1 k +1 ≥ 1 ˆ ξ k +1 ( x ) = 0 otherwise , i.i.d. where N k ( x ) = � y ∼ x ˆ ξ k ( y ) , η w ∼ Bernoulli(1 / 2 N ). k +1 � ◮ Approximation of density ( A ˆ 1 y ∼ x ˆ ξ )( x ) = ξ ( y ). 2 N α 7 / 11

  18. Horizontal Rescale the horizontal space by N 1+ α and its horizontal time step by N 2 α ξ n ( · ) : Z / N 1+ α → { 0 , 1 } . ◮ ˆ ◮ � ξ j ( x ) = 0 and � N k ( x ) if � j ≤ k ˆ w =1 η w 1 k +1 ≥ 1 ˆ ξ k +1 ( x ) = 0 otherwise , i.i.d. where N k ( x ) = � y ∼ x ˆ ξ k ( y ) , η w ∼ Bernoulli(1 / 2 N ). k +1 � ◮ Approximation of density ( A ˆ 1 y ∼ x ˆ ξ )( x ) = ξ ( y ). 2 N α ◮ ˆ ξ k +1 ( x ) = ξ k ( x ) + Laplacian + martingale − 1 � � ˆ ˆ ˆ ξ k ( y ) ξ j ( x ) + Error . 2 N y ∼ x j ≤ k � �� � converges when α =1 / 5 7 / 11

  19. Heuristics ξ n ( · ) : Z / N 1+ α → { 0 , 1 } , ( A ˆ ◮ ˆ 1 � y ∼ x ˆ ξ )( x ) = ξ ( y ) 2 N α 8 / 11

  20. Heuristics ξ n ( · ) : Z / N 1+ α → { 0 , 1 } , ( A ˆ ◮ ˆ 1 � y ∼ x ˆ ξ )( x ) = ξ ( y ) 2 N α ξ 0 ) = 1 [ − 1 , 1] , N α − 1 on each site and total number is N 2 α ◮ Initially, A (ˆ 8 / 11

  21. Heuristics ξ n ( · ) : Z / N 1+ α → { 0 , 1 } , ( A ˆ ◮ ˆ 1 � y ∼ x ˆ ξ )( x ) = ξ ( y ) 2 N α ξ 0 ) = 1 [ − 1 , 1] , N α − 1 on each site and total number is N 2 α ◮ Initially, A (ˆ ◮ After N 2 α steps, dying chance is N 3 α − 1 8 / 11

  22. Heuristics ξ n ( · ) : Z / N 1+ α → { 0 , 1 } , ( A ˆ ◮ ˆ 1 � y ∼ x ˆ ξ )( x ) = ξ ( y ) 2 N α ξ 0 ) = 1 [ − 1 , 1] , N α − 1 on each site and total number is N 2 α ◮ Initially, A (ˆ ◮ After N 2 α steps, dying chance is N 3 α − 1 ◮ Total attrition is N 5 α − 1 8 / 11

  23. Main result ◮ C i : cluster at layer i 9 / 11

  24. Main result ◮ C i : cluster at layer i ◮ |C i | ≈ N 2 α 9 / 11

  25. Main result ◮ C i : cluster at layer i ◮ |C i | ≈ N 2 α Theorem 1 (Mountford, Vares, X.). The critical value is b = 2 / 5 ( ǫ ( N ) = κ N − b ): there exist positive constants C 1 and C 2 such that for κ < C 1 , there is no percolation and for κ > C 2 , the percolation appears. 9 / 11

  26. Supercritical/ higher dimensions cases (on going) ◮ When λ > 1 , d = 1 (horizontal open probability is λ/ 2 N ): the critical vertical interaction is ǫ ( N ) = e − κ N . 10 / 11

  27. Supercritical/ higher dimensions cases (on going) ◮ When λ > 1 , d = 1 (horizontal open probability is λ/ 2 N ): the critical vertical interaction is ǫ ( N ) = e − κ N . ◮ When λ > 1 , d > 1, there always exists a percolation. ◮ What is the probability of a large but finite size cluster? 10 / 11

  28. Thanks! 11 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend