darwinsche evolution aus molekularer sicht
play

Darwinsche Evolution aus molekularer Sicht Peter Schuster Institut - PowerPoint PPT Presentation

Darwinsche Evolution aus molekularer Sicht Peter Schuster Institut fr Theoretische Chemie, Universitt Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Darwin Lecture Series 07/08 Wien Biozentrum Althanstrae, 10.01.2008


  1. Darwinsche Evolution aus molekularer Sicht Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Darwin Lecture Series 07/08 Wien Biozentrum Althanstraße, 10.01.2008

  2. Web-Page for further information: http://www.tbi.univie.ac.at/~pks

  3. 1. Darwinsche Evolution 2. Evolutionsexperimente mit Molekülen 3. Replikation, Mutation und Fitnesslandschaften 4. Evolution in silico 5. Neutrale Evolution 6. Multistabilität und RNA-Schalter

  4. 1. Darwinsche Evolution 2. Evolutionsexperimente mit Molekülen 3. Replikation, Mutation und Fitnesslandschaften 4. Evolution in silico 5. Neutrale Evolution 6. Multistabilität und RNA-Schalter

  5. Selection and Genetic drift in Genetic drift in Generation time adaptation small populations large populations 10 6 generations 10 7 generations 10 000 generations RNA molecules 10 sec 27.8 h = 1.16 d 115.7 d 3.17 a 1 min 6.94 d 1.90 a 19.01 a Bacteria 20 min 138.9 d 38.03 a 380 a 10 h 11.40 a 1 140 a 11 408 a Multicelluar organisms 10 d 274 a 27 380 a 273 800 a 2 × 10 7 a 2 × 10 8 a 20 a 20 000 a Time scales of evolutionary change

  6. Three necessary conditions for Darwinian evolution are: 1. Multiplication, 2. Variation , and 3. Selection. Variation through mutation and recombination operates on the genotype whereas the phenotype is the target of selection . One important property of the Darwinian scenario is that variations in the form of mutations or recombination events occur uncorrelated with their effects on the selection process . All conditions can be fulfilled not only by cellular organisms but also by nucleic acid molecules in suitable cell-free experimental assays.

  7. Bacterial Evolution S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants . Science 272 (1996), 1802-1804 D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot. Genomic evolution during a 10,000-generation experiment with bacteria . Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812

  8. 1 year Epochal evolution of bacteria in serial transfer experiments under constant conditions S. F. Elena, V. S. Cooper, R. E. Lenski. Punctuated evolution caused by selection of rare beneficial mutants . Science 272 (1996), 1802-1804

  9. Variation of genotypes in a bacterial serial transfer experiment D. Papadopoulos, D. Schneider, J. Meier-Eiss, W. Arber, R. E. Lenski, M. Blot. Genomic evolution during a 10,000-generation experiment with bacteria . Proc.Natl.Acad.Sci.USA 96 (1999), 3807-3812

  10. D. Papadopoulos et al. Genomic evolution during a 10000-generation experiment with bacteria. Proc.Natl.Acad.Sci.USA 96 :3807-3812, 1999

  11. 1. Darwinsche Evolution 2. Evolutionsexperimente mit Molekülen 3. Replikation, Mutation und Fitnesslandschaften 4. Evolution in silico 5. Neutrale Evolution 6. Multistabilität und RNA-Schalter

  12. Evolution of RNA molecules based on Q β phage D.R.Mills, R.L.Peterson, S.Spiegelman, An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule . Proc.Natl.Acad.Sci.USA 58 (1967), 217-224 S.Spiegelman, An approach to the experimental analysis of precellular evolution . Quart.Rev.Biophys. 4 (1971), 213-253 C.K.Biebricher, Darwinian selection of self-replicating RNA molecules . Evolutionary Biology 16 (1983), 1-52 G.Bauer, H.Otten, J.S.McCaskill, Travelling waves of in vitro evolving RNA. Proc.Natl.Acad.Sci.USA 86 (1989), 7937-7941 C.K.Biebricher, W.C.Gardiner, Molecular evolution of RNA in vitro . Biophysical Chemistry 66 (1997), 179-192 G.Strunk, T.Ederhof, Machines for automated evolution experiments in vitro based on the serial transfer concept . Biophysical Chemistry 66 (1997), 193-202 F.Öhlenschlager, M.Eigen, 30 years later – A new approach to Sol Spiegelman‘s and Leslie Orgel‘s in vitro evolutionary studies . Orig.Life Evol.Biosph. 27 (1997), 437-457

  13. RNA sample Time 0 1 2 3 4 5 6 69 70 � Stock solution: Q RNA-replicase, ATP, CTP, GTP and UTP, buffer Anwendung der seriellen Überimpfungstechnik auf RNA-Evolution in Reagenzglas

  14. Decrease in mean fitness due to quasispecies formation The increase in RNA production rate during a serial transfer experiment

  15. Stock solution : activated monomers, ATP, CTP, GTP, UTP (TTP); a replicase, an enzyme that performs complemantary replication; buffer solution The flowreactor is a device for studies of evolution in vitro and in silico .

  16. Evolutionary design of RNA molecules D.B.Bartel, J.W.Szostak, In vitro selection of RNA molecules that bind specific ligands . Nature 346 (1990), 818-822 C.Tuerk, L.Gold, SELEX - Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase . Science 249 (1990), 505-510 D.P.Bartel, J.W.Szostak, Isolation of new ribozymes from a large pool of random sequences . Science 261 (1993), 1411-1418 R.D.Jenison, S.C.Gill, A.Pardi, B.Poliski, High-resolution molecular discrimination by RNA . Science 263 (1994), 1425-1429 Y. Wang, R.R.Rando, Specific binding of aminoglycoside antibiotics to RNA . Chemistry & Biology 2 (1995), 281-290 Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex . Chemistry & Biology 4 (1997), 35-50

  17. An example of ‘artificial selection’ with RNA molecules or ‘breeding’ of biomolecules

  18. The SELEX technique for the evolutionary preparation of aptamers

  19. tobramycin -3’ 5’- G C A C G A U U U A C U A C A C U C G U C G G G G G C U U 5’- G C A C G A G G G U A RNA aptamer 3’- G C C G U C C A G U C A U C Formation of secondary structure of the tobramycin binding RNA aptamer with K D = 9 nM L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Saccharide-RNA recognition in an aminoglycoside antibiotic- RNA aptamer complex. Chemistry & Biology 4 :35-50 (1997)

  20. The three-dimensional structure of the tobramycin aptamer complex L. Jiang, A. K. Suri, R. Fiala, D. J. Patel, Chemistry & Biology 4 :35-50 (1997)

  21. Application of molecular evolution to problems in biotechnology

  22. 1. Darwinsche Evolution 2. Evolutionsexperimente mit Molekülen 3. Replikation, Mutation und Fitnesslandschaften 4. Evolution in silico 5. Neutrale Evolution 6. Multistabilität und RNA-Schalter

  23. ‚Replication fork‘ in DNA replication The mechanism of DNA replication is ‚semi-conservative‘

  24. Complementary replication is the simplest copying mechanism of RNA. Complementarity is determined by Watson-Crick base pairs: G � C and A = U

  25. Variation of genotypes through mutation

  26. Chemical kinetics of molecular evolution M. Eigen, P. Schuster, `The Hypercycle´, Springer-Verlag, Berlin 1979

  27. The replication-mutation equation

  28. Mutation-selection equation : [I i ] = x i � 0, f i > 0, Q ij � 0 dx ∑ ∑ ∑ n n n = − φ = = φ = = i f Q x x i n x f x f , 1 , 2 , , ; 1 ; L j ji j i i j j = = = dt j i j 1 1 1 Solutions are obtained after integrating factor transformation by means of an eigenvalue problem ( ) ( ) ∑ − n 1 ⋅ ⋅ λ c t l 0 exp ( ) ∑ n ik k k = = = = x t k i n c h x 0 ; 1 , 2 , , ; ( 0 ) ( 0 ) L ( ) ( ) ∑ ∑ i − k ki i n n 1 = i ⋅ ⋅ λ 1 c t 0 exp l jk k k = = j k 1 0 { } { } { } ÷ = = = − = = = 1 W f Q i j n L i j n L H h i j n ; , 1 , 2 , L , ; l ; , 1 , 2 , L , ; ; , 1 , 2 , L , i ij ij ij { } − ⋅ ⋅ = Λ = λ = − 1 L W L k n ; 0 , 1 , L , 1 k

  29. Formation of a quasispecies in sequence space

  30. Formation of a quasispecies in sequence space

  31. Formation of a quasispecies in sequence space

  32. Formation of a quasispecies in sequence space

  33. Uniform distribution in sequence space

  34. Quasispecies Uniform distribution 0.00 0.05 0.10 Error rate p = 1-q Quasispecies as a function of the error rate p

  35. Chain length and error threshold ⋅ σ = − ⋅ σ ≥ ⇒ ⋅ − ≥ − σ n Q p n p ( 1 ) 1 ln ( 1 ) ln σ ln ≈ n p constant : K max n σ ln ≈ p n constant : K max p = − n Q p ( 1 ) K replicatio n accuracy p error rate K n chain length K f = σ m superiorit y of master sequence K ∑ ≠ f j j m

  36. Quasispecies Driving virus populations through threshold The error threshold in replication

  37. Fitness landscapes showing error thresholds

  38. Every point in sequence space is equivalent Sequence space of binary sequences with chain length n = 5

  39. Error threshold: Error classes and individual sequences n = 10 and � = 2

  40. Error threshold: Individual sequences n = 10, � = 2 and d = 0, 1.0, 1.85

  41. Fitness landscapes not showing error thresholds

  42. Error thresholds and gradual transitions n = 20 and � = 10

  43. 1. Darwinsche Evolution 2. Evolutionsexperimente mit Molekülen 3. Replikation, Mutation und Fitnesslandschaften 4. Evolution in silico 5. Neutrale Evolution 6. Multistabilität und RNA-Schalter

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend