cyclic polar codes
play

Cyclic Polar Codes Narayanan Rengaswamy Henry D. Pfister Texas - PowerPoint PPT Presentation

Cyclic Polar Codes Narayanan Rengaswamy Henry D. Pfister Texas A&M University Duke University r narayanan 92@tamu.edu henry.pfister@duke.edu 2015 IEEE International Symposium on Information Theory June 16, 2015 Narayanan Rengaswamy


  1. Cyclic Polar Codes Narayanan Rengaswamy Henry D. Pfister Texas A&M University Duke University r narayanan 92@tamu.edu henry.pfister@duke.edu 2015 IEEE International Symposium on Information Theory June 16, 2015 Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 1 / 32 Cyclic Polar Codes

  2. Polar Codes Overview Polar Codes 1 Overview Cyclic Polar Codes 2 Galois field Fourier transform Cyclic polar codes Decoding 3 Successive Cancellation Decoding Results 4 For the q -ary Erasure Channel For the q -ary Symmetric Channel Conclusions 5 Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 2 / 32 Cyclic Polar Codes

  3. Polar Codes Overview Polar Codes Introduced by Arıkan in [Arı09] using the binary 2 × 2 kernel � 1 � 0 G 2 = 1 1 Length N = 2 n polar transform matrix is given by G N = B N G ⊗ n 2 , where B N is the length- N bit-reversal permutation matrix. Shown to achieve the symmetric capacity of binary input DMCs, asymptotically, under successive cancellation (SC) decoding. Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 3 / 32 Cyclic Polar Codes

  4. Polar Codes Overview Extensions of Polar Codes Blocklength N = ℓ n , ℓ > 2; Transformation G N = B N G ⊗ n ℓ Korada et al.: Binary G ℓ for binary DMCs [KS ¸U10]. S ¸a¸ so˘ glu et al.: Binary G ℓ for q -ary DMCs, q prime [S ¸TA09]. Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 4 / 32 Cyclic Polar Codes

  5. Polar Codes Overview Extensions of Polar Codes Blocklength N = ℓ n , ℓ > 2; Transformation G N = B N G ⊗ n ℓ Korada et al.: Binary G ℓ for binary DMCs [KS ¸U10]. S ¸a¸ so˘ glu et al.: Binary G ℓ for q -ary DMCs, q prime [S ¸TA09]. Mori and Tanaka: Non-binary G ℓ for arbitrary q -ary DMCs, q = p m [MT10; MT14]. For example, using extended RS matrices.    α 0 α 0  1 1 0 0  = α 1 α 0 G RS (3 , 3) = 2 1 0 0    α 0 α 0 α 0 1 1 1 where α = 2 ∈ F 3 is primitive. Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 4 / 32 Cyclic Polar Codes

  6. Polar Codes Overview Motivation for Cyclic Polar Codes So far, blocklength N = ℓ n and transformation G N = B N G ⊗ n . ℓ How about mixed-size kernels? Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 5 / 32 Cyclic Polar Codes

  7. Polar Codes Overview Motivation for Cyclic Polar Codes System implementation: Many systems use RS or other cyclic codes. Can we relate polar codes to RS codes? More fundamentally, can we make polar codes cyclic? Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 6 / 32 Cyclic Polar Codes

  8. CP Codes Overview Polar Codes 1 Overview Cyclic Polar Codes 2 Galois field Fourier transform Cyclic polar codes Decoding 3 Successive Cancellation Decoding Results 4 For the q -ary Erasure Channel For the q -ary Symmetric Channel Conclusions 5 Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 7 / 32 Cyclic Polar Codes

  9. CP Codes Galois field Fourier transform Galois field Fourier Transform Replace polar transform with Galois field Fourier Transform (GFFT). Input: u = ( u 0 , u 1 , . . . , u N − 1 ), Output: v = ( v 0 , v 1 , . . . , v N − 1 ). Then GFFT u ← − − − v If F N is the GFFT matrix, N − 1 � v i ω ij u = F N v (or) u j = i =0 for j = 0 , 1 , . . . , N − 1, where ω in F q has order N . Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 8 / 32 Cyclic Polar Codes

  10. CP Codes Galois field Fourier transform Galois field Fourier Transform How is this related to the polar transform? Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 9 / 32 Cyclic Polar Codes

  11. CP Codes Galois field Fourier transform Galois field Fourier Transform How is this related to the polar transform? Evaluate the GFFT using the Cooley-Tukey FFT [CT65]. Factor N = � n m =1 ℓ m = ℓ 1 ℓ 2 · · · ℓ n . Implement small GFFTs of length ℓ m directly. Combine them using appropriate twiddle factors and index-shuffles. Simplest case is ℓ 1 = ℓ 2 = · · · = ℓ n = 2 for N = 2 n ; equivalent to standard polar code. Ignoring twiddle factors, the Kronecker product of repeated short GFFTs gives a long GFFT. Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 9 / 32 Cyclic Polar Codes

  12. CP Codes Galois field Fourier transform Galois field Fourier Transform − → ℓ 1 = 5 ℓ 2 = 3 ← − Stage Stage Stage Encode u (1) F ′ F ′ Decode u (0) m = 0 m = 1 i m = 2 ℓ 1 ℓ 2 i u 0 u 0 v 0 v 0 u 1 u 3 F ′ v 5 v 1 3 F ′ u 2 u 6 v 10 v 2 5 u 3 u 9 v 1 v 3 u 4 u 12 v 6 v 4 F ′ 3 u 5 u 1 v 11 v 5 1 u 6 u 4 v 2 v 6 α − 1 u 7 u 7 F ′ F ′ v 7 v 7 5 α − 2 3 u 8 u 10 v 12 v 8 α − 3 u 9 u 13 v 3 v 9 α − 4 u 10 u 2 F ′ v 8 v 10 3 1 u 11 u 5 v 13 v 11 α − 2 u 12 u 8 v 4 v 12 F ′ α − 4 5 u 13 u 11 v 9 v 13 F ′ α − 6 3 u 14 u 14 v 14 v 14 α − 8 GFFT Input Length-5 Index Length-3 Output GIFFT of v of u Shuffle IFFTs Shuffle IFFTs Shuffle An example for N = 15 over F 16 depicting the transform. α is a primitive element in F 16 . In this case ω = α . Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 10 / 32 Cyclic Polar Codes

  13. CP Codes Cyclic polar codes Cyclic Polar Codes Recollect that N − 1 � v i ω ij u j = i =0 where ω N = 1 in F q . In polynomial notation, with v ( x ) = � N − 1 i =0 v i x i , we have N − 1 N − 1 u j x j = � � v ( ω j ) x j u ( x ) = j =0 j =0 Hence, u j ’s are evaluations of v ( x ). Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 11 / 32 Cyclic Polar Codes

  14. CP Codes Cyclic polar codes Cyclic Polar Codes Design of the code C produces the set of information indices A . Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 12 / 32 Cyclic Polar Codes

  15. CP Codes Cyclic polar codes Cyclic Polar Codes Design of the code C produces the set of information indices A . Given A c , the indices frozen to zeros in u ( x ), there exists a generator g ( x ) such that � ( x − ω j ) v ( x ) = u A ( x ) g ( x ) = u A ( x ) j ∈A c where ω N = 1 in F q . Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 12 / 32 Cyclic Polar Codes

  16. CP Codes Cyclic polar codes Cyclic Polar Codes Design of the code C produces the set of information indices A . Given A c , the indices frozen to zeros in u ( x ), there exists a generator g ( x ) such that � ( x − ω j ) v ( x ) = u A ( x ) g ( x ) = u A ( x ) j ∈A c where ω N = 1 in F q . We have a cyclic code! Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 12 / 32 Cyclic Polar Codes

  17. CP Codes Cyclic polar codes Cyclic Polar Codes Design of the code C produces the set of information indices A . Given A c , the indices frozen to zeros in u ( x ), there exists a generator g ( x ) such that � ( x − ω j ) v ( x ) = u A ( x ) g ( x ) = u A ( x ) j ∈A c where ω N = 1 in F q . We have a cyclic code! Constraint: N | ( q − 1). Hence, field size must grow with the blocklength. Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 12 / 32 Cyclic Polar Codes

  18. CP Codes Cyclic polar codes Cyclic Polar Codes Is this transformation polarizing? Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 13 / 32 Cyclic Polar Codes

  19. CP Codes Cyclic polar codes Cyclic Polar Codes Example: N = 3 and N = 5 over F 16 .  1 1 1 1 1  ω 2 ω 3 ω 4   1 1 1 1 ω   ω 2  ω 2 ω 4 ω 3  G 3 = 1 ω and G 5 = 1 ω     ω 2  ω 3 ω 4 ω 2  1 ω 1 ω   ω 4 ω 3 ω 2 1 ω where ω 3 = 1 for G 3 , ω 5 = 1 for G 5 . Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 14 / 32 Cyclic Polar Codes

  20. CP Codes Cyclic polar codes Cyclic Polar Codes Example: N = 3 and N = 5 over F 16 .  1 1 1 1 1  ω 2 ω 3 ω 4   1 1 1 1 ω   ω 2  ω 2 ω 4 ω 3  G 3 = 1 ω and G 5 = 1 ω     ω 2  ω 3 ω 4 ω 2  1 ω 1 ω   ω 4 ω 3 ω 2 1 ω where ω 3 = 1 for G 3 , ω 5 = 1 for G 5 . The transformation G N , a GFFT matrix, polarizes any q -ary channel because it is invertible and not upper triangular. contains a primitive element [MT14]. Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 14 / 32 Cyclic Polar Codes

  21. Decoding Overview Polar Codes 1 Overview Cyclic Polar Codes 2 Galois field Fourier transform Cyclic polar codes Decoding 3 Successive Cancellation Decoding Results 4 For the q -ary Erasure Channel For the q -ary Symmetric Channel Conclusions 5 Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 15 / 32 Cyclic Polar Codes

  22. Decoding Successive Cancellation Decoding Soft Decoder Blocklength N = 2 n over q -ary channel, q prime. Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 16 / 32 Cyclic Polar Codes

  23. Decoding Successive Cancellation Decoding Soft Decoder Blocklength N = 2 n over q -ary channel, q prime. Consider a 2 × 2 butterfly: inputs ( a 0 , a 1 ) and outputs ( b 0 , b 1 ). b 0 = a 0 + a 1 b 1 = a 0 + α a 1 Narayanan Rengaswamy & Henry D. Pfister June 16, 2015 16 / 32 Cyclic Polar Codes

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend