cw 2gev linac error simulations at 10 ma
play

CW 2GeV Linac Error Simulations at 10 mA 80 parameters scanned / New - PowerPoint PPT Presentation

CW 2GeV Linac Error Simulations at 10 mA 80 parameters scanned / New TRACK Jean-Paul Carneiro March 23, 2010 ALIGN Parameter TRACKv39 n ALIGN name xy z z dyn . F dyn . static F static From RFQ exit to end of


  1. CW 2GeV Linac Error Simulations at 10 mA 80 parameters scanned / ”New TRACK” Jean-Paul Carneiro March 23, 2010

  2. ALIGN Parameter TRACKv39 n ALIGN name δ xy δ z φ z δφ dyn . δ F dyn . δφ static δ F static ◮ From RFQ exit to end of the CW 2 GeV linac ( ∼ 400 meters) ◮ 80 errors simulated with TRACKv39 ◮ Each error simulated with 100 runs with 3D SC (10 mA) ◮ 80 × 100=8000 runs with TRACKv39 on FermiGrid

  3. Parameters 01-20 ◮ 11/ Sol. Field δ F dynamic = 0 . 5 % ◮ 01/ Solenoids δ xy = 150 µ m ◮ 12/ Sol. Field δ F dynamic = 1 . 0 % ◮ 02/ Solenoids δ xy = 300 µ m ◮ 13/ Sol. Field δ F dynamic = 1 . 5 % ◮ 03/ Solenoids δ xy = 500 µ m ◮ 14/ Sol. Field δ F dynamic = 2 . 0 % ◮ 04/ Solenoids δ xy = 750 µ m ◮ 15/ Sol. Field δ F dynamic = 2 . 5 % ◮ 05/ Solenoids δ xy = 1000 µ m ◮ 16/ Sol. Field δ F static = 0 . 5 % ◮ 06/ Solenoids δ z = 150 µ m ◮ 17/ Sol. Field δ F static = 1 . 0 % ◮ 07/ Solenoids δ z = 300 µ m ◮ 18/ Sol. Field δ F static = 1 . 5 % ◮ 08/ Solenoids δ z = 500 µ m ◮ 19/ Sol. Field δ F static = 2 . 0 % ◮ 09/ Solenoids δ z = 750 µ m ◮ 20/ Sol. Field δ F static = 2 . 5 % ◮ 10/ Solenoids δ z = 1000 µ m

  4. Parameters 21-40 ◮ 31/ Quads φ z = 1 mrad ◮ 21/ Quads δ xy = 150 µ m ◮ 32/ Quads φ z = 2 mrad ◮ 22/ Quads δ xy = 300 µ m ◮ 33/ Quads φ z = 5 mrad ◮ 23/ Quads δ xy = 500 µ m ◮ 34/ Quads φ z = 7 mrad ◮ 24/ Quads δ xy = 750 µ m ◮ 35/ Quads φ z = 10 mrad ◮ 25/ Quads δ xy = 1000 µ m ◮ 36/ Quads Field δ F dynamic = 0 . 5 % ◮ 26/ Quads δ z = 150 µ m ◮ 37/ Quads Field δ F dynamic = 1 . 0 % ◮ 27/ Quads δ z = 300 µ m ◮ 38/ Quads Field δ F dynamic = 1 . 5 % ◮ 28/ Quads δ z = 500 µ m ◮ 39/ Quads Field δ F dynamic = 2 . 0 % ◮ 29/ Quads δ z = 750 µ m ◮ 40/ Quads Field δ F dynamic = 2 . 5 % ◮ 30/ Quads δ z = 1000 µ m

  5. Parameters 41-60 ◮ 51/ Cav. δ z = 150 µ m ◮ 41/ Quads Field δ F static = 0 . 5 % ◮ 52/ Cav. δ z = 300 µ m ◮ 42/ Quads Field δ F static = 1 . 0 % ◮ 53/ Cav. δ z = 500 µ m ◮ 43/ Quads Field δ F static = 1 . 5 % ◮ 54/ Cav. δ z = 750 µ m ◮ 44/ Quads Field δ F static = 2 . 0 % ◮ 55/ Cav. δ z = 1000 µ m ◮ 45/ Quads Field δ F static = 2 . 5 % ◮ 56/ Cav. φ z = 1 mrad ◮ 46/ Cav. δ xy = 150 µ m ◮ 57/ Cav. φ z = 2 mrad ◮ 47/ Cav. δ xy = 300 µ m ◮ 58/ Cav. φ z = 5 mrad ◮ 48/ Cav. δ xy = 500 µ m ◮ 59/ Cav. φ z = 7 mrad ◮ 49/ Cav. δ xy = 750 µ m ◮ 60/ Cav. φ z = 10 mrad ◮ 50/ Cav. δ xy = 1000 µ m

  6. Parameters 61-80 ◮ 71/ Cav. Phase δφ static = 0 . 5 ◦ ◮ 61/ Cav. Phase δφ dynamic = 0 . 5 ◦ ◮ 72/ Cav. Phase δφ static = 1 . 0 ◦ ◮ 62/ Cav. Phase δφ dynamic = 1 . 0 ◦ ◮ 73/ Cav. Phase δφ static = 1 . 5 ◦ ◮ 63/ Cav. Phase δφ dynamic = 1 . 5 ◦ ◮ 74/ Cav. Phase δφ static = 2 . 0 ◦ ◮ 64/ Cav. Phase δφ dynamic = 2 . 0 ◦ ◮ 75/ Cav. Phase δφ static = 2 . 5 ◦ ◮ 65/ Cav. Phase δφ dynamic = 2 . 5 ◦ ◮ 76/ Cav. Field δ F static = 0 . 5 % ◮ 66/ Cav. Field δ F dynamic = 0 . 5 % ◮ 77/ Cav. Field δ F static = 1 . 0 % ◮ 67/ Cav. Field δ F dynamic = 1 . 0 % ◮ 78/ Cav. Field δ F static = 1 . 5 % ◮ 68/ Cav. Field δ F dynamic = 1 . 5 % ◮ 79/ Cav. Field δ F static = 2 . 0 % ◮ 69/ Cav. Field δ F dynamic = 2 . 0 % ◮ 80/ Cav. Field δ F static = 2 . 5 % ◮ 70/ Cav. Field δ F dynamic = 2 . 5 %

  7. (181) Solenoids δ xy = 150 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  8. (182) Solenoids δ xy = 300 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  9. (183) Solenoids δ xy = 500 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  10. (184) Solenoids δ xy = 750 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  11. (185) Solenoids δ xy = 1000 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  12. (186) Solenoids δ z = 150 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  13. (187) Solenoids δ z = 300 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance z

  14. (188) Solenoids δ z = 500 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  15. (189) Solenoids δ z = 750 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  16. (190) Solenoids δ z = 1000 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  17. (191) Sol. Field δ F dynamic = 0 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  18. (192) Sol. Field δ F dynamic = 1 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  19. (193) Sol. Field δ F dynamic = 1 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  20. (194) Sol. Field δ F dynamic = 2 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  21. (195) Sol. Field δ F dynamic = 2 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  22. (196) Sol. Field δ F static = 0 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  23. (197) Sol. Field δ F static = 1 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  24. (198) Sol. Field δ F static = 1 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  25. (199) Sol. Field δ F static = 2 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  26. (200) Sol. Field δ F static = 2 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  27. (201) Quads δ xy = 150 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  28. (202) Quads δ xy = 300 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  29. (203) Quads δ xy = 500 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  30. (204) Quads δ xy = 750 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  31. (205) Quads δ xy = 1000 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  32. (206) Quads δ z = 150 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  33. (207) Quads δ z = 300 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance z

  34. (208) Quads δ z = 500 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  35. (209) Quads δ z = 750 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  36. (210) Quads δ z = 1000 µ m Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  37. (211) Quads φ z = 1 mrad Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  38. (212) Quads φ z = 2 mrad Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  39. (213) Quads φ z = 5 mrad Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  40. (214) Quads φ z = 7 mrad Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  41. (215) Quads φ z = 10 mrad Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  42. (216) Quads Field δ F dynamic = 0 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  43. (217) Quads Field δ F dynamic = 1 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  44. (218) Quads Field δ F dynamic = 1 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  45. (219) Quads Field δ F dynamic = 2 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  46. (220) Quads Field δ F dynamic = 2 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  47. (221) Quads Field δ F static = 0 . 5 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

  48. (222) Quads Field δ F static = 1 . 0 % Figure: RMS Emittance X Figure: RMS Emittance Y Figure: Losses [W · m − 1 ] Figure: RMS Emittance Z

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend