cubical type theory
play

Cubical Type Theory Dan Licata Wesleyan University Guillaume - PowerPoint PPT Presentation

Cubical Type Theory Dan Licata Wesleyan University Guillaume Brunerie Universit de Nice Sophia Antipolis Synthetic geometry Euclids postulates 1. To draw a straight line from any point to any point. 2. To produce a finite straight line


  1. Respect Equivalence p 0 : α a 0 = B b 0 α : A ≃ B p 0 : a 0 = A α -1 b 0 p 0 : a 0 = α b 0 p 1 : a 1 = α b 1 p 0 = α p 1 : a 0 = A a 1 ≃ b 0 = B b 1 α p α a 0 α a 1 p : a 0 = A a 1 � p 0 p 1 α p : α a 0 = B α a 1 b 0 b 1 ! p 0 ; α p ; p 1 B 21

  2. Missing Sides 22

  3. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) 23

  4. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) 23

  5. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) t x z A l r y w 23

  6. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) t x z A l r y w b 23

  7. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) t t’ x z x’ z’ A A’ r’ l r l’ y w y’ w’ b 23

  8. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) t t’ x z x’ z’ A A’ r’ l r l’ y w y’ w’ b b’ 23

  9. p : x = A y p’ : x’ = A’ y’ (p,p’) : (x , x’) = A × A’ (y , y’) (t,t’) (x , x’) (z , z’) A × A’ (l,l’) (r,r’) (y , y’) (w , w’) t t’ (b,b’) x z x’ z’ A A’ r’ l r l’ y w y’ w’ b b’ 23

  10. x:A ⊢ p : f x = A’ g x λ x.p : f = A $ A’ g 24

  11. x:A ⊢ p : f x = A’ g x λ x.p : f = A $ A’ g t f h A $ A’ l r g k 24

  12. x:A ⊢ p : f x = A’ g x λ x.p : f = A $ A’ g t t x f h f x h x A $ A’ A’ l r l x r x g k g x k x 24

  13. x:A ⊢ p : f x = A’ g x λ x.p : f = A $ A’ g t t x f h f x h x A $ A’ A’ l r l x r x g k g x k x b[x] 24

  14. x:A ⊢ p : f x = A’ g x λ x.p : f = A $ A’ g t t x f h f x h x A $ A’ A’ l r l x r x g k g x k x b[x] λ x.b 24

  15. t p u l a0 = A a1 r q v p q u v : a0 = A a1 l : p = a0=a1 q t : p = a0=a1 u r : u = a0=a1 v 25

  16. refl a0 a0 t p u p l q a1 a1 l a0 = A a1 r refl q v p q u v : a0 = A a1 l : p = a0=a1 q t : p = a0=a1 u r : u = a0=a1 v 25

  17. refl a0 a0 p t u a1 a1 refl refl a0 a0 t p u p l q a1 a1 l a0 = A a1 r refl q v p q u v : a0 = A a1 l : p = a0=a1 q t : p = a0=a1 u r : u = a0=a1 v 25

  18. refl a0 a0 p t u a1 a1 refl refl refl a0 a0 a0 a0 t p u u r p l q v a1 a1 a1 a1 l a0 = A a1 r refl refl q v p q u v : a0 = A a1 l : p = a0=a1 q t : p = a0=a1 u r : u = a0=a1 v 25

  19. a0 t p u l a0 = A a1 r q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  20. a0 t p u l a0 = A a1 r q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  21. a0 t p u l p q l a0 = A a1 r q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  22. a0 t p u l t p q l a0 = A a1 r q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  23. a0 t r p u l t p u q l a0 = A a1 r v q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  24. a0 a0 a0 t a0 a0 r p u l t p u q l a0 = A a1 r v q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  25. a0 a0 a0 t a0 a0 r p u l t p u q l a0 = A a1 r v q v refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  26. a0 a0 a0 t a0 a0 r p u l t p u q l a0 = A a1 r v a1 q v a1 a1 a1 refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  27. a0 a0 a0 t a0 a0 r p u l t p u q l a0 = A a1 r v a1 q v a1 a1 a1 refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  28. a0 a0 a0 t a0 a0 r p u l t b p u q l a0 = A a1 r v a1 q v a1 a1 a1 refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  29. a0 a0 a0 t a0 a0 r p u l t b p u q l a0 = A a1 r v a1 q v a1 b a1 a1 refl refl refl a0 a0 a0 a0 a0 a0 p t u u r v l q p a1 a1 a1 a1 a1 a1 refl refl refl 26

  30. Kan condition: any n-dimensional open box has a lid, and an inside 27

  31. Cubes 28

  32. Line l l0 l1 29

  33. Square x y s00 s10 s s01 s11 30

  34. Square x y s-0 s00 s10 s s0- s1- s01 s11 s-1 30

  35. Square with its boundary s x y 31

  36. Square with its boundary s s<0/x> x y 31

  37. Square with its boundary s s<0/x> s<1/x> x y 31

  38. Square with its boundary s<0/y> s s<0/x> s<1/x> x y 31

  39. Square with its boundary s<0/y> s s<0/x> s<1/x> s<1/y> x y 31

  40. Square with its boundary s<0/y> s<0/x><0/y> s s<0/x> s<1/x> s<1/y> x y 31

  41. Square with its boundary s<0/y> s<0/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/y> x y 31

  42. Square with its boundary s<0/y> s<0/x><0/y> s<1/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/y> x y 31

  43. Square with its boundary s<0/y> s<0/x><0/y> s<1/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/x><1/y> s<1/y> x y 31

  44. Square with its boundary s<0/y> s<0/x><0/y> s<1/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/x><1/y> s<1/y> x y 31

  45. Square with its boundary s<0/y><1/x> s<0/y> s<0/x><0/y> s<1/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/x><1/y> s<1/y> x y 31

  46. Square with its boundary s<0/y><1/x> ≡ s<0/y> s<0/x><0/y> s<1/x><0/y> s s<0/x> s<1/x> s<0/x><1/y> s<1/x><1/y> s<1/y> x y substitutions for independent variables commute 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend