cubical
play

Cubical Type Theory favonia 1 2 t f 2 t f 2 t - PowerPoint PPT Presentation

Cubical Type Theory favonia 1 2 t f 2 t f 2 t f 2 t f 4 0 7 3 8 1 5 2 6 2 t f 4 0 7 3 8 1 5 2 6 2 3 3 3 3


  1. Cubical Type Theory favonia 1

  2. 2

  3. t 𝔺 f 2

  4. βŸ™ t 𝔺 f 2

  5. βŸ™ ⟘ t 𝔺 f 2

  6. βŸ™ ⟘ t 𝔺 f 4 0 7 3 8 1 5 2 … 6 β„• 2

  7. βŸ™ ⟘ t 𝔺 f 4 0 7 3 8 1 5 2 … 6 … β„• β†’ β„• β„• 2

  8. 3

  9. 3

  10. 3

  11. 3

  12. 3

  13. 3

  14. 1 6 7 4 5 9 8 2 3 0 quotient 4

  15. 1 6 7 4 5 9 8 2 3 0 quotient 4

  16. 1 6 7 4 5 9 8 2 3 0 quotient 4

  17. universe 5

  18. id 𝔺 not universe 5

  19. id id 𝔺 βŸ™ + βŸ™ not swap universe 5

  20. ⟘ id id 𝔺 βŸ™ + βŸ™ not swap β„• β†’ β„• … β„• universe 5

  21. p o o l base circle (homotopy theory) 6

  22. I. Cubes 7

  23. M A 8

  24. M A 1 0 8

  25. M A i 1 0 i: 𝕁 ⊦ M : A 8

  26. M A i j i: 𝕁 , j: 𝕁 ⊦ M : A 9

  27. M A n-cube i 1 : 𝕁 , i 2 : 𝕁 , ..., i n : 𝕁 ⊦ M : A 10

  28. M i j 11

  29. M[1/j] M[1/i] M[0/i] M[0/j] M i j 11

  30. M[1/j] M[1/i] M[i/j] M[0/i] M[0/j] M i j 11

  31. M N N 0 1 A path types functions from 𝕁 12

  32. M N N 0 1 A i: 𝕁 ⊦ M : A M[0/i] ≑ N 0 : A[0/i] M[1/i] ≑ N 1 : A[1/i] Ξ» i.M : Path i.A (N 0 ,N 1 ) 13

  33. M N N 0 1 A i: 𝕁 ⊦ M : A M[0/i] ≑ N 0 : A[0/i] M[1/i] ≑ N 1 : A[1/i] Ξ» i.M : Path i.A (N 0 ,N 1 ) r: 𝕁 P : Path i.A (N 0 ,N 1 ) P@r : A[r/i] P@0 ≑ N 0 : A[0/i] P@1 ≑ N 1 : A[1/i] 13

  34. M N N 0 1 A i: 𝕁 ⊦ M : A M[0/i] ≑ N 0 : A[0/i] M[1/i] ≑ N 1 : A[1/i] Ξ» i.M : Path i.A (N 0 ,N 1 ) r: 𝕁 P : Path i.A (N 0 ,N 1 ) ( Ξ» i.M)@r ≑ M[r/i] : A[r/i] P@r : A[r/i] P ≑ Ξ» i.P@i : Path i.A (N 0 ,N 1 ) P@0 ≑ N 0 : A[0/i] P@1 ≑ N 1 : A[1/i] 13

  35. function extensionality almost trivial h : Ξ  (x:A). Path(F(x), G(x)) Ξ» i. Ξ» x.h(x)@i : Path(F, G) 14

  36. II. the Book 15

  37. Id A (M,N) N M A re fl M : Id A (M,M) the only generator 16

  38. zero base case suc induction step mathematical induction re fl re fl case β€œJ”: induction principle for Id 17

  39. univalence as axiom Id U (A, B) B A A ≃ B (A ≃ B) ≃ Id U (A, B) 18

  40. univalence as axiom Id U (A, B) B A A ≃ B (A ≃ B) ≃ Id U (A, B) (A ≃ B) β†’ Id U (A, B) 18

  41. p o o l base circle base : circle loop : Id circle (base, base) 19

  42. y l loop n o h e t r w i J … fl univalence re fl case normalization in danger* J(loop) ≑ ??? 20 *most experts believe the normalization fails

  43. Leave Id alone! Id/Path should re fl ect existing paths, not inducing new ones 21

  44. p o o l i loop i base circle base : circle i: 𝕁 ⊦ loop i : circle loop 0 ≑ base : circle loop 1 ≑ base : circle 22

  45. univalence as a type V i (A, B, E) B A E : A ≃ B (when i = 0)* *see [AFH] (not recommended as the fi rst paper to read) 23

  46. Judgmental framework paths of (then internalized by Path/Id) 24

  47. III. Compositions 25

  48. concatenation? 26

  49. concatenation? 26

  50. concatenation? 26

  51. Kan fi lling for cubes 27

  52. Kan fi lling for cubes 27

  53. constant concatenation Kan fi lling for cubes 27

  54. fi llers can be done by higher-dimensional composition* Kan composition 28 *technical limitations apply; see papers for real (!) math

  55. fi llers can be done by higher-dimensional composition* k j i 29

  56. fi llers can be done by higher-dimensional composition* j=1 ⊦ M j=1 : A i=1 ⊦ M i=1 : A i=0 ⊦ M i=0 : A k j=0 ⊦ M j=0 : A j i 29

  57. fi llers can be done by higher-dimensional composition* j=1 ⊦ M j=1 : A i=1 ⊦ M i=1 : A i=0 ⊦ M i=0 : A k j=0 ⊦ M j=0 : A j i k=0 ⊦ M k=0 : A 29

  58. i=0 β†ͺ M i=0 i=1 β†ͺ M i=1 comp k.A M k=0 : A[1/k] j=0 β†ͺ M j=0 j=1 β†ͺ M j=1 M j=1 M i=1 M i=0 k M j=0 j i M k=0 30

  59. U a composite in a universe is a type itself which has its own composition operator 31

  60. A : M 𝕁 : i ⊦ x a t n y s models in other higher toposes? a model equivalent to β€œStandard” the homotopy theory? 32

  61. Agda --cubical https://github.com/agda/cubical redtt https://github.com/RedPRL/redtt 33

  62. One Path to Enlightenment (in this order) Homotopy Type Theory: Univalent Foundations of Mathematics Syntax and Models of Cartesian Cubical Type Theory [ABCFHL] https://github.com/dlicata335/cart-cube/blob/master/cart-cube.pdf Axioms for Modelling Cubical Type Theory in a Topos [OP] (expanded version) https://arxiv.org/abs/1712.04864 Computational Semantics of Cartesian Cubical Type Theory [A] (chapter 3, still changing everyday) https://www.cs.cmu.edu/~cangiuli/thesis/ 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend