cse nb 528 lecture 10 recurrent networks
play

CSE/NB 528 Lecture 10: Recurrent Networks (Chapter 7) Lecture - PDF document

CSE/NB 528 Lecture 10: Recurrent Networks (Chapter 7) Lecture figures are from Dayan & Abbotts book R. Rao, CSE528: Lecture 10 1 http://people.brandeis.edu/~abbott/book/index.html Whats on our smrgsbord today? F Computation in


  1. CSE/NB 528 Lecture 10: Recurrent Networks (Chapter 7) Lecture figures are from Dayan & Abbott’s book R. Rao, CSE528: Lecture 10 1 http://people.brandeis.edu/~abbott/book/index.html What’s on our smörgåsbord today? F Computation in Linear Recurrent Networks Eigenvalue analysis F Non-linear Recurrent Networks Eigenvalue analysis F Covered in: Chapter 7 in Dayan & Abbott R. Rao, CSE528: Lecture 10 2

  2. Linear Recurrent Networks d v     W  M v u v dt Output Decay Input Feedback R. Rao, CSE528: Lecture 10 3 What can a Linear Recurrent Network do? d v     W  M v u v dt On-Board analysis based on eigenvectors of recurrent weight matrix M R. Rao, CSE528: Lecture 10 4

  3. Example of a Linear Recurrent Network Each neuron codes for an angle between -180 to +180 degrees Recurrent connections M = cosine function of relative angle +       M ( , ' ) cos( ' ) - - Excitation nearby, Inhibition further away (  -  ’ ) Is M symmetric? M (  ,  ’ )= M (  ’ ,  ’ )? R. Rao, CSE528: Lecture 10 5 Example of a Linear Recurrent Network       M ( , ' ) cos( ' ) Each neuron has a preferred angle between -180 to +180 degrees 1     All eigenvalues = 0 except 0 . 9 10 i.e. ampli fication  1 1 - 1 (See section 7.4 in Dayan & Abbott) R. Rao, CSE528: Lecture 10 6

  4. Example: Amplification in a Linear Recurrent Network Input Output (noisy cosine) Preferred angle of neuron R. Rao, CSE528: Lecture 10 7 Example: Memory for Maintaining Eye Position Input: Bursts of spikes from brain stem oculomotor neurons Output: Memory of eye position in medial vestibular nucleus R. Rao, CSE528: Lecture 10 8

  5. Nonlinear Recurrent Networks d v      ( W M ) v F u v dt Output Decay Input Feedback (Convenient to use W u = h ) R. Rao, CSE528: Lecture 10 9 Amplification in a Nonlinear Recurrent Network Input Output (F = rectification nonlinearity: F(x) = x if x > 0 and 0 o.w.)  1  1 . 9 (but stable due to rectification) R. Rao, CSE528: Lecture 10 10

  6. Selective “Attention” in a Nonlinear Recurrent Network Input Output Network performs “winner -takes- all” input selection R. Rao, CSE528: Lecture 10 11 Gain Modulation in a Nonlinear Recurrent Network Inputs Outputs Changing the level of input multiplies the output R. Rao, CSE528: Lecture 10 12

  7. Gain Modulation in Parietal Cortex Neurons Gaze 2 Gaze 1 Example of a gain- Responses of Area 7a neuron modulated tuning curve R. Rao, CSE528: Lecture 10 13 Short-Term Memory Storage in a Nonlinear Recurrent Network Local Input + Output Network maintains Background a memory of previous activity when input is turned off. Similar to “short - Turn off input Output term memory” or “working memory” in prefrontal cortex Memory is maintained by recurrent activity R. Rao, CSE528: Lecture 10 14

  8. What about Non-Symmetric Recurrent Networks? F Example: Network of Excitatory (E) and Inhibitory (I) Neurons Connections can’t be symmetric: Why?    dv        E v M v M v E E EE E EI I E dt    dv        I v M v M v I I II I IE E I dt Simple 2-neuron network representing interacting populations One excitatory neuron and one inhibitory neuron R. Rao, CSE528: Lecture 10 15 Stability Analysis of Nonlinear Recurrent Networks d v  General case : ( ) f v dt  Suppose v is a fixed point (i.e., f ( v ) 0)   ε d v d    ε Near v , v ( t ) v ( t ) (i.e., )   dt dt  f   ε Taylor expansion : f ( v ( t ) ) f ( v ) ( t )   v v   ε J is the “Jacobian d v f d     ε ε . . ( ) ( ) i e t J t  matrix” dt v dt v  Derive solution for v ( t ) based on eigen-analysis of J Eigenvalues of J determine stability of network (see Mathematical Appendix A.3 in textbook) R. Rao, CSE528: Lecture 10 16

  9. Example: Non-Symmetric Recurrent Networks F Specific Network of Excitatory (E) and Inhibitory (I) Neurons: 10 ms 1.25 -1 -10    dv        E v M v M v E E EE E EI I E dt   dv         I v M v M v I I II I IE E I dt 0 1 10 Parameter we will vary to study the network R. Rao, CSE528: Lecture 10 17 Linear Stability Analysis        dv v M v M v  Take derivatives of right E E EE E EI I E  dt hand side with respect to E   both v E and v I      dv v M v M v  I I II I IE E I  dt I F Matrix of derivatives (the “ Jacobian Matrix”):    ( M 1 ) M EE EI        E E J  ( 1 )  M M  IE II       I I R. Rao, CSE528: Lecture 10 18

  10. Compute the Eigenvalues F Jacobian Matrix:    ( M 1 ) M EE EI        E E J  ( 1 )  M M  IE II       I I F Its two eigenvalues (obtained by solving det ( J –  I) = 0):   2         1 ( 1 ) ( 1 ) 1 1 M M M M M M         EE II EE II EI IE 4             2     E I E I E I Different dynamics depending on real and imaginary parts of  (see pages 410-412 of Appendix in Text) R. Rao, CSE528: Lecture 10 19 Phase Plane and Eigenvalue Analysis  I = 30 ms 50ms    dv      E 10 v 1 . 25 v v 10 E E I dt    dv        I 0 10 v v v I I I E dt R. Rao, CSE528: Lecture 10 20

  11. Damped Oscillations in the Network  I = 30 ms (negative real eigenvalue) Stable Fixed Point R. Rao, CSE528: Lecture 10 21 Unstable Behavior and Limit Cycle  I = 50 ms (positive real eigenvalue) Limit cycle R. Rao, CSE528: Lecture 10 22

  12. Oscillatory Activity in Real Networks Sniff Sniff Sniff Activity in rabbit (or wabbit) olfactory bulb during 3 sniffs (see Chapter 7 in textbook for details) R. Rao, CSE528: Lecture 10 23 F Things to do: That’s all folks! Start reading Chapter 8 in D & A Homework #3 assigned today Start working on final project R. Rao, CSE528: Lecture 10 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend