course on inverse problems
play

Course on Inverse Problems Albert Tarantola Third Lesson: - PowerPoint PPT Presentation

Princeton University Department of Geosciences Course on Inverse Problems Albert Tarantola Third Lesson: Probability (Elementary Notions) Let u and v be two Cartesian parameters (then, volumetric probabilities and probability densities are


  1. Princeton University Department of Geosciences Course on Inverse Problems Albert Tarantola Third Lesson: Probability (Elementary Notions)

  2. Let u and v be two Cartesian parameters (then, volumetric probabilities and probability densities are identical). Given a probability density f ( u , v ) , one defines the two marginal probability densities � + ∞ f u ( u ) = − ∞ dv f ( u , v ) � + ∞ f v ( v ) = − ∞ du f ( u , v ) and the two conditional probability densities f ( u , v 0 ) f u | v ( u | v = v 0 ) = � + ∞ − ∞ du f ( u , v 0 ) f ( u 0 , v ) f v | u ( v | u = u 0 ) = � + ∞ − ∞ dv f ( v , u 0 )

  3. 0 10 0.05 0 10 5 0 -5 -10 5 0.15 0 -5 -10 10 5 0 -5 -10 0.1 0.2 0.12 0.2 marginal conditional conditional conditional conditional joint 0.25 0.15 0.25 0.1 0.05 0 10 5 0 -5 -10 0.14 0.1 0.02 10 0.15 0.125 0.1 0.075 0.05 0.025 0 5 -5 0 -5 -10 0.12 0.1 0.08 0.06 0.04 -10 0 0.08 -10 0.06 0.04 0.02 0 10 5 0 -5 0.14 5 0.12 0.1 0.08 0.06 0.04 0.02 0 10 marginal

  4. Let u and v be two Cartesian parameters (then, volumetric probabilities and probability densities are identical). Given a probability density f ( u , v ) , one defines the two marginal probability densities � + ∞ f u ( u ) = − ∞ dv f ( u , v ) � + ∞ f v ( v ) = − ∞ du f ( u , v ) and the two conditional probability densities f ( u , v 0 ) f u | v ( u | v = v 0 ) = � + ∞ − ∞ du f ( u , v 0 ) f ( u 0 , v ) f v | u ( v | u = u 0 ) = � + ∞ − ∞ dv f ( v , u 0 )

  5. Let u and v be two Cartesian parameters (then, volumetric probabilities and probability densities are identical). Given a probability density f ( u , v ) , one defines the two marginal probability densities � + ∞ f u ( u ) = − ∞ dv f ( u , v ) � + ∞ f v ( v ) = − ∞ du f ( u , v ) and the two conditional probability densities f ( u , v 0 ) f u | v ( u | v 0 ) = � + ∞ − ∞ du f ( u , v 0 ) f ( u 0 , v ) f v | u ( v | u 0 ) = � + ∞ − ∞ dv f ( v , u 0 )

  6. Let u and v be two Cartesian parameters (then, volumetric probabilities and probability densities are identical). Given a probability density f ( u , v ) , one defines the two marginal probability densities � + ∞ f u ( u ) = − ∞ dv f ( u , v ) � + ∞ f v ( v ) = − ∞ du f ( u , v ) and the two conditional probability densities f ( u , v ) f u | v ( u | v ) = � + ∞ − ∞ du f ( u , v ) f ( u , v ) f v | u ( v | u ) = � + ∞ − ∞ dv f ( v , u )

  7. One has f u | v ( u | v ) = f ( u , v ) f v ( v ) f v | u ( v | u ) = f ( u , v ) f u ( u ) from where (a joint distribution can be expressed by a condi- tional distribution times a marginal distribution) f ( u , v ) = f u | v ( u | v ) f v ( v ) = f v | u ( v | u ) f u ( u ) from where (Bayes theorem) f v | u ( v | u ) f u ( u ) f u | v ( u | v ) = f v ( v )

  8. Recall: f ( u , v ) = f u | v ( u | v ) f v ( v ) = f v | u ( v | u ) f u ( u ) . The two quantities u and v are said to have independent un- certainties if, in fact, f ( u , v ) = f u ( u ) f v ( v ) (the joint distribution equals the product of the two marginal distributions). This implies (and is implied by) f u | v ( u | v ) = f u ( u ) f v | u ( v | u ) = f v ( v ) ; .

  9. -5 5 (the joint distribution is the product two quantities with independent uncertainties 10 5 0 -5 -10 20 15 10 0 0 -5 10 5 0 -5 -10 0 20 15 10 5 of the two marginal distributions)

  10. Let u and v be two Cartesian parameters (then, volumet- ric probabilities and probability densities are identical). Let f ( u , v ) , be a probability density that is not qualitatively differ- ent from a two-dimensional Gaussian. The mean values are � + ∞ � + ∞ u = − ∞ dv u f ( u , v ) − ∞ du � + ∞ � + ∞ v = − ∞ dv v f ( u , v ) − ∞ du the variances are � + ∞ � + ∞ − ∞ dv ( u − u ) 2 f ( u , v ) c uu = σ 2 u = − ∞ du � + ∞ � + ∞ − ∞ dv ( v − v ) 2 f ( u , v ) c vv = σ 2 v = − ∞ du and the covariance is � + ∞ � + ∞ c uv = − ∞ du − ∞ dv ( u − u )( v − v ) f ( u , v )

  11. The covariance matrix is � � � � σ 2 c uu c uv c uv u C = = . σ 2 c vu c vv c vu v It is symmetric and positive definite (or, at least, non-negative). Note: the correlation, defined as c uv c uv ρ uv = = √ c uu √ c vv , σ u σ v − 1 ≤ ρ uv ≤ + 1 . has the property

  12. The general form of a covariance matrix is σ 2     c 12 c 13 . . . c 11 c 12 c 13 . . . 1 σ 2  c 21 c 22 c 23 . . .   c 21 c 23 . . .  2     C = = .     σ 2 c 31 c 32 c 33 . . . c 31 c 32 . . .     3      . . .    ... . . . ... . . . . . . . . . . . . The quantities with immediate interpretation are the standard deviations { σ 1 , σ 2 , σ 3 , . . . } and the correlation matrix   1 . . . ρ 12 ρ 13  1 . . .  ρ 21 ρ 23   R =   1 . . .   ρ 31 ρ 32     . . . ... . . . . . .

  13. The multidimensional Gaussian distribution is defined as f ( x 1 , x 2 , . . . , x n ) ≡ � − 1 2 ( x − x 0 ) t C -1 ( x − x 0 ) ) f ( x ) = k exp Its mean is x 0 and its covariance is C (not obvious!).

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend