cosmological b l breaking dark matter gravitational waves
play

Cosmological B L Breaking: (Dark) Matter & Gravitational Waves - PowerPoint PPT Presentation

Cosmological B L Breaking: (Dark) Matter & Gravitational Waves Wilfried Buchm uller DESY, Hamburg with Valerie Domcke, Kai Schmitz & Kohei Kamada 1202.6679; 1203.0285, 1210.4105, 1305.3392 GGI, Florence, June 2013 I. B L


  1. Cosmological B � L Breaking: (Dark) Matter & Gravitational Waves Wilfried Buchm¨ uller DESY, Hamburg with Valerie Domcke, Kai Schmitz & Kohei Kamada 1202.6679; 1203.0285, 1210.4105, 1305.3392 GGI, Florence, June 2013

  2. I. B � L breaking, inflation & dark matter • Light neutrino masses can be explained by mixing with Majorana neutrinos with GUT scale masses from B � L breaking (seesaw mechanism) • Decays of heavy Majorana neutrinos natural source of baryon asymmetry (leptogenesis; thermal (Fukugita, Yanagida ’86) or nonthermal (Lazarides, Shafi ’91) ) • In supersymmetric models with spontaneous B � L breaking, natural connection with inflation (Copeland et al ’94; Dvali, Shafi, Schaefer ’94; ...) • LSP (gravitino, higgsino,...) natural candidate for dark matter • Consistent picture of inflation, baryogenesis and dark matter? • Possible direct test: gravitational waves 1

  3. Leptogenesis and gravitinos: for thermal leptogenesis and typical superparticle masses, thermal production yields observed amount of DM, ✓ ◆ ✓ 100 GeV ◆ ⇣ m ˜ ⌘ 2 T R G h 2 = C g , C ⇠ 0 . 5 ; Ω ˜ 10 10 GeV m ˜ 1 TeV G Ω DM h 2 ⇠ 0 . 1 is natural value; but why T R ⇠ T L ? Starting point simple observation: heavy neutrino decay width ✓ M 1 ◆ 2 N 1 = ˜ m 1 ⇠ 10 3 GeV , M 1 ⇠ 10 10 GeV . Γ 0 m 1 ⇠ 0 . 01 eV , e 8 ⇡ v EW yields reheating temperature (for decaying gas of heavy neutrinos) q N 1 M P ⇠ 10 10 GeV , Γ 0 T R ⇠ 0 . 2 · wanted for gravitino DM. Intriguing hint or misleading coincidence? 2

  4. II. Spontaneous B � L breaking and false vacuum decay Supersymmetric SM with right-handed neutrinos, W M = h u ij 10 i 10 j H u + h d i n c j H u + h n i n c i n c i 10 j H d + h ⌫ ij 5 ⇤ ij 5 ⇤ i S 1 , in SU (5) notation: 10 = ( q, u c , e c ) , 5 ⇤ = ( d c , l ) ; electroweak symmetry breaking, h H u,d i / v EW , and B � L breaking, p � � � v 2 W B � L = B � L � 2 S 1 S 2 , 2 Φ p h S 1 , 2 i = v B � L / 2 yields heavy neutrino masses. Lagrangian is determined by low energy physics: quark, lepton, neutrino masses etc, but it contains all ingredients wanted in cosmology: inflation, leptogenesis, dark matter,..., all related! 3

  5. m ⌫ = p m 2 m 3 = 3 ⇥ 10 � 2 eV, Parameters of B � L breaking sector: m 1 = ( m † M 1 ⌧ M 2 , 3 ' m S , e D m D ) 11 /M 1 , v B � L . Spontaneous symmetry breaking: consider Abelian Higgs model in unitary gauge ( ! massive vector multiplet, no Wess-Zumino gauge!), S 1 , 2 = 1 V = Z + i 2 S 0 exp( ± iT ) , p 2 g ( T � T ⇤ ) . Inflaton field Φ : slow motion (quantum corrections), changes mass of ‘waterfall’ field S , rapid change after critical point where m S = 0 ; basic mechanism of hybrid inflation. p Shift around time-dependent background, s 0 = 2 ( � 0 + i ⌧ ) , � 0 ! 1 2 v ( t )+ � p x ) i 1 / 2 1 2 h � 0 2 ( t, ~ with v ( t ) = x ; masses of fluctuations: p ~ 4

  6.                        � = 1 ⌧ = 1 m 2 2 � (3 v 2 ( t ) � v 2 m 2 2 � ( v 2 B � L + v 2 ( t )) , m 2 � = � v 2 ( t ) , B � L ) , m 2 = � v 2 ( t ) , m 2 Z = 8 g 2 v 2 ( t ) , M 2 i = ( h n i ) 2 v 2 ( t ) ; time-dependent masses of B � L Higgs, inflaton, vector boson, heavy neutrinos, all supermultiplets! 5

  7. Constraints from cosmic strings and inflation: upper bound on string tension (Planck Collaboration ’13) Gµ < 3 . 2 ⇥ 10 � 7 , µ = 2 ⇡ B ( � ) v 2 B � L , with � = � / (8 g 2 ) and B ( � ) = 2 . 4 [ln(2 / � )] � 1 for � < 10 � 2 ; further constraint from CMB (cf. Nakayama et al ’10) , yields 3 ⇥ 10 15 GeV . v B � L . 7 ⇥ 10 15 GeV , p 10 � 4 . � . 10 � 1 . Final choice for range of parameters (analysis within FN flavour model): v B � L = 5 ⇥ 10 15 GeV , 10 � 5 eV  e m 1  1 eV , 10 9 GeV  M 1  3 ⇥ 10 12 GeV . (range of e m 1 : uncertainty of O (1) parameters) 6

  8. Tachyonic Preheating Hybrid inflation ends at critical value Φ c of inflaton field Φ by rapid growth of fluctuations of B � L Higgs field S 0 (‘spinodal decomposition’): 10 φ (t) (Tanh) Bosons: Lattice < φ 2 (t)> 1/2 /v (Lattice) Tanh n B (x100) (Tanh) Fermions: Lattice 1 n B (x100) (Lattice) Tanh 1 0.1 Occupation number: n k < φ 2 (t)> 1/2 /v, n B (t) 0.01 0.1 0.001 0.0001 0.01 1e-05 1e-06 0.001 1e-07 5 10 15 20 25 30 0.1 1 time: mt k/m in addition, particles which couple to S 0 are produced by rapid increase of ‘waterfall field’ (Garcia-Bellido, Morales ’02) ; no coherent oscillations! 7

  9. Decay of false vacuum produces long wave-length � -modes, true vacuum reached at time t PH (even faster decay with inflaton dynamics), ✓ 32 ⇡ 2 ◆ � 1 � h � 0 2 i = 2 v 2 B � L , t PH ' ln . � 2 m � � t = t PH Initial state: nonrelativistic gas of � -bosons, N 2 , 3 , ˜ N 2 , 3 , A , ˜ A , C (contained in superfield Z ), ... ; energy fractions ( ↵ = m X /m S , ⇢ 0 = � v 4 B � L / 4 ): ⇢ B / ⇢ 0 ' 2 ⇥ 10 � 3 g s � f ( ↵ , 1 . 3) , ⇢ F / ⇢ 0 ' 1 . 5 ⇥ 10 � 3 g s � f ( ↵ , 0 . 8) . Time evolution: rapid N 2 , 3 , ˜ N 2 , 3 , A , ˜ A , C decays, yields initial radiation, thermal N 1 ’s and gravitinos; � decays produce nonthermal N 1 ’s; N 1 decays produce most of radiation and baryon asymmetry; details of evolution described by Boltzmann equations. 8

  10. Reheating Process Major work: solve network of Boltzmann equations for all (super)particles; treat nonthermal and thermal contributions di ff erently, varying equation of state; result: detailed time resolved description of reheating process, prediction of baryon asymmetry and gravitino density (possibly dark matter). Illustrative example for parameter choice M 1 = 5 . 4 ⇥ 10 10 GeV , m 1 = 4 . 0 ⇥ 10 � 2 eV , e Gµ = 2 . 0 ⇥ 10 � 7 m e G = 100 GeV , m ˜ g = 1 TeV ; fixes (within FN flavour model) all other masses, CP asymmetries etc. Note: emergence of temperature plateau at intermediate times; final result: ⌘ B ' 3 . 7 ⇥ 10 � 9 ' ⌘ nt G h 2 ' 0 . 11 , B , Ω e i.e., dynamical realization of original conjecture. 9

  11. Thermal and nonthermal number densities Inverse temperature M 1 ê T 10 - 1 10 0 10 1 10 2 10 3 10 50 R 10 45 s+y+f é nt nt + N N 1 1 10 40 B - L abs N H a L eq 2 N 1 é G 10 35 é th th + N N 1 1 10 30 é N 2,3 + N 2,3 f 10 25 i a RH a RH a RH 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 Scale factor a Comoving number densites of thermal and nonthermla N 0 1 s ,..., B � L , gravitinos and radiation as functions of scale factor a . 10

  12. Time evolution of temperature: intermediate plateau Inverse temperature M 1 ê T 10 - 1 10 0 10 1 10 2 10 3 10 12 10 11 T H a L @ GeV D 10 10 10 9 10 8 f i a RH a RH a RH 10 7 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 Scale factor a Gravitino abundance can be understood from ‘standard formula’ and e ff ective ‘reheating temperature’ (determined by neutrino masses). 11

  13. III. Gravitinos & Dark Matter Thermal production of gravitinos is origin of DM; depending on pattern of SUSY breaking, gravitino DM or higgsino/wino DM. Mass spectrum of superparticles motivated ‘large’ Higgs mass measured at the LHC, m LSP ⌧ m squark , slepton ⌧ m e G . LSP is typically ‘pure’ wino or higgsino (bino disfavoured, overproduction in thermal freeze-out), almost mass degenerate with chargino. Thermal w ) or higgsino ( e abundance of wino ( e h ) LSP significant for masses above 1 TeV , well approximated by (Arkani-Hamed et al ’06; Hisano et al ’07, Cirelli et al ’07) ✓ m e ◆ 2 w, e h h 2 = c e h Ω th , c e w = 0 . 014 , c e h = 0 . 10 , w, e w, e h e 1 TeV Heavy gravitinos ( 10 TeV . . . 10 3 TeV ) consistent with BBN, ⌧ e G ' 24 ⇥ 12

  14. G ) 3 sec . Total higgsino/wino abundance (10 TeV /m e h h 2 = Ω h h 2 + Ω th h h 2 , e G Ω e w, e w, e w, e e e ⌘ ✓ T RH ( M 1 , e ◆ G h 2 ' 2 . 7 ⇥ 10 � 2 ⇣ m LSP LSP h 2 = m LSP m 1 ) e G Ω Ω e , 10 10 GeV m e 100 GeV G with ‘reheating temperature’ determined by neutino masses (takes reheating process into account), ✓ ◆ 1 / 4 ✓ ◆ 5 / 4 m 1 e M 1 T RH ' 1 . 3 ⇥ 10 10 GeV . 10 11 GeV 0 . 04 eV Requirement of LSP dark matter, i.e. Ω LSP h 2 = Ω DM h 2 ' 0 . 11 , yields upper bound on the reheating temperature, T RH < 4 . 2 ⇥ 10 10 GeV ; lower bound on T RH from successfull leptogenesis (depends on e m 1 ). 13

  15. 3000 obs é > W DM W w 10 11 obs W LSP > W DM D é 2500 w é @ TeV D m LSP @ GeV D T RH @ GeV D 2000 10 10 m é 1 @ eV D 100 ¥ m G 1500 10 0 obs é > W DM W h 10 9 10 - 2 1000 é 4 He h é G 10 - 4 500 10 - 5 10 - 4 10 - 3 10 - 2 10 - 1 10 0 10 1 10 2 10 3 é é @ TeV D m G m 1 @ eV D For each ‘reheating temperature’, i.e. pair ( M 1 , e m 1 ) , lower bound on gravitino mass (taken from Kawasaki et al ’08) (left panel). Requirement of higgsino/wino dark matter puts upper bound on LSP mass, dependent on e m 1 , ‘reheating temperature’ (right panel); more stringent for higgsino mass, since freeze-out contribution larger. E.g., m 1 = 0 . 05 eV implies h < m e ⇠ 900 GeV, m e G & 10 TeV. 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend