cosmic antimatter from dark matter annihilation effects
play

Cosmic antimatter from dark matter annihilation: effects of - PowerPoint PPT Presentation

Cosmic antimatter from dark matter annihilation: effects of cosmological subhalos and uncertainties Julien Lavalle (Dept of Theoretical Physics, University of Turin) Refs (arXiv) : 0603796, 0712.0468, 0709.3634, 0704.2543, 0808.0332,


  1. Cosmic antimatter from dark matter annihilation: effects of cosmological subhalos and uncertainties Julien Lavalle (Dept of Theoretical Physics, University of Turin) Refs (arXiv) : 0603796, 0712.0468, 0709.3634, 0704.2543, 0808.0332, 0809.5268, 0902.3665 Collab: Delahaye, Salati, Taillet (LAPTH) – Maurin (LPNHE) – Nezri (LAM) Ling (Brussels) – Donato, Fornengo, Lineros (Turin) – Bi, Yuan (Beijing) – Bringmann (Stockholm) 1 st Tango in Paris — IAP Tuesday, May 5 th 2009 Julien Lavalle, TANGO in Paris — IAP , 4-7/V/2009 – p. 1

  2. Requirements from PAMELA e + background (Delahaye et al, arXiv:0809.5268) ] ) -1 - + +e .GeV Secondary e flux + -2 10 - + /(e e fraction (med e spectrum) IS -1 .s + -1 positron fraction e .sr φ = 600 MV -2 /dE [cm -3 10 MS98 (IS) φ d 3.5 -1 10 + e ∈ = 600 MV) Propagation -4 10 MIN φ CAPRICE 94 TOA ( Propagation MED -5 MIN 10 HEAT 94-95 HEAT 94-95 MAX MED HEAT 00 AMS 01 MAX -2 AMS1 07 10 Full allowed MS98 PAMELA 08 -6 10 -1 2 2 10 1 10 10 1 10 10 E [GeV] E [GeV] Julien Lavalle, TANGO in Paris — IAP , 4-7/V/2009 – p. 2

  3. Requirements from PAMELA e + background Orders of magnitude for χχ → e + e − (for E → m χ = 100 GeV). (Delahaye et al, arXiv:0809.5268) From PAMELA, the excess is � 5 × φ bg (100 GeV) ∼ 1 . 5 · 10 − 9 cm − 2 . s − 1 . GeV − 1 . sr − 1 . « − 3 . 5 ] „ E ) -1 - + 3 · 10 − 10 +e cm − 2 . s − 1 . GeV − 1 . sr − 1 .GeV Secondary e flux φ bg (100 GeV) ≃ + -2 100 GeV 10 - + /(e e fraction (med e spectrum) IS -1 .s „ ρ ⊙ + -1 « 2 positron fraction e .sr δβc τE 0 � σv � φ = 600 MV -2 φ χχ ( E → m χ ) ≃ /dE [cm E 2 4 π 2 m χ -3 10 « „ 100 GeV MS98 (IS) « 4 „ τ ” „ ρ ⊙ � σv � « φ 3 · 10 − 10 “ d ≃ 3.5 -1 10 + e 3 · 10 − 26 cm 3 / s 10 16 s 0 . 3 GeV / cm 3 ∈ m χ = 600 MV) Propagation -4 10 For m χ ≃ 100 GeV, need for an amplification of: B ≃ 5 . MIN φ CAPRICE 94 TOA ( Propagation MED -5 MIN 10 HEAT 94-95 HEAT 94-95 MAX MED HEAT 00 AMS 01 MAX -2 AMS1 07 10 Full allowed MS98 PAMELA 08 -6 10 -1 2 2 10 1 10 10 1 10 10 E [GeV] E [GeV] Julien Lavalle, TANGO in Paris — IAP , 4-7/V/2009 – p. 2

  4. Smooth NFW halo and generic predictions CAPRICE 94 -2 10 HEAT 94-95 AMS 01 Boost to get ∼ 5 × φ bg at ∼ 100 GeV : -3 10 ] -1 100 GeV .sr -4 10 -1 WIMP mass 100 GeV 500 GeV 1 TeV .s 500 GeV -1 .GeV final state -5 10 -2 1000 GeV /dE [cm e + e − 5 100 350 -6 10 W + W − 80 500 1000 φ d -7 10 3.5 b ¯ + b 250 500 1000 e from WIMPs E + e line -8 10 + - W W b b -9 10 Bg Del08 -10 10 3 -1 2 10 1 10 10 10 E [GeV] Julien Lavalle, TANGO in Paris — IAP , 4-7/V/2009 – p. 3

  5. Smooth NFW halo and generic predictions Baltz & Edsjö, 98 Boost factor of 55 E.A. Baltz and J. Edsjö, 1998 CAPRICE 94 Positron fraction, e + / (e + + e - ) -2 10 HEAT 94-95 Signal + bkg. HEAT 94+95 Bkg. AMS 01 Boost to get ∼ 5 × φ bg at ∼ 100 GeV : Signal -3 10 Bkg. only fit -1 ] -1 10 100 GeV .sr -4 10 -1 WIMP mass 100 GeV 500 GeV 1 TeV (d) Example 4 .s 500 GeV -1 .GeV final state -5 10 -2 1000 GeV /dE [cm e + e − 5 100 350 -6 10 W + W − 80 500 1000 φ d -7 10 3.5 b ¯ + b 250 500 1000 e from WIMPs E -2 m χ = 130.3 GeV 10 + e line -8 10 k s = 54.6 + - W W χ 2 /7 = 1.35 b b -9 10 Bg Del08 2 3 1 10 10 10 Positron energy (GeV) -10 10 3 -1 2 10 1 10 10 10 E [GeV] Julien Lavalle, TANGO in Paris — IAP , 4-7/V/2009 – p. 3

  6. Inhomogeneous halo and boosted annihilation rate Though the topic is still controversial, clumps are predicted by theory and simulations of hierarchical formation of structures (in the frame of Λ CDM) Annihilation rate is increased in a characteristic volume, because < n 2 dm > ≥ < n dm > 2 (Silk & Stebbins ApJ’93) The boost factor to the annihilation rate is related to the statistical variance via <n 2 dm > B ann ∼ <n dm > 2 There is some scatter in N-body experi- ments: how to translate theoretical un- certainties to flux uncertainties ? what and where are the less ambiguous sig- natures, if so ? (Fig. from Diemand et al, MNRAS’04) Julien Lavalle, TANGO in Paris — IAP , 4-7/V/2009 – p. 4

  7. Inhomogeneous halo and boosted annihilation rate Though the topic is still controversial, Minimal mass from free streaming ∼ 10 − 6 M ⊙ clumps are predicted by theory and (e.g. Bringmann arXiv:0903.0189). simulations of hierarchical formation of . structures (in the frame of Λ CDM) Nbody resolution: ∼ 10 5 M ⊙ — ∼ 10 5 subhalos Annihilation rate is increased in a in the MW (e.g. Diemand et al 08, Springel et al characteristic volume, because 08). < n 2 dm > ≥ < n dm > 2 .. (Silk & Stebbins ApJ’93) Mass distribution ∼ M − 1 . 9 , various concentra- tion models. ⇒∼ 10 15 Earth-mass objects in the The boost factor to the annihilation rate is MW! related to the statistical variance via <n 2 .. dm > B ann ∼ <n dm > 2 Antibiased spatial distribution. (What for small objects ?) There is some scatter in N-body experi- .. ments: how to translate theoretical un- Limits: spatial and mass resolutions (numerical) certainties to flux uncertainties ? what + NO BARYONS (physical)! and where are the less ambiguous sig- natures, if so ? (Fig. from Diemand et al, MNRAS’04) Julien Lavalle, TANGO in Paris — IAP , 4-7/V/2009 – p. 4

  8. Gamma-rays versus antimatter cosmic rays Courtesy P . Salati The annihilation signal is integrated : over a small solid angle around the line of sight for γ − rays and neutrinos = ⇒ Boost factors are not the same ! over a rather small volume around the Earth for antimatter CRs, due to diffu- sion processes Julien Lavalle, TANGO in Paris — IAP , 4-7/V/2009 – p. 5

  9. Boost from few objects 0.16 ) - m = 50 GeV Primary contribution +e LZP (m = 6 TeV) + Background from MS98 KK /(e 0.14 Total + positron fraction e Few massive subhalos are expected in the HEAT data 0.12 MW: Closest clump at ~0.5 kpc 0.1 ” − 1 “ M ∼ 100 × 10 8 M ⊙ 0.08 0.06 By chance , one or few could wander close to 0.04 the Earth ... 0.02 Predictions: move a single (or few) object(s) 2 1 10 10 E (GeV) Lavalle, Pochon, Salati & Taillet around astro-ph/0603796 Very small probability: fine tuned models 1 + e from WIMPs -1 10 smooth !!! ( ∼ O (10 3 − 4 )objects / MW volume ) Clump at 2 kpc -2 ] 10 -1 .sr -1 -3 .s 10 -1 .GeV Multimessenger analysis : check radio, γ -ray -4 10 -2 /dE [cm -5 10 and antiproton constraints -6 φ 10 d 3.5 E -7 10 Not a clean prediction of clumpiness ⇒ -8 10 What about global effects? . -9 10 -10 10 -1 2 10 1 10 10 E [GeV] Julien Lavalle, TANGO in Paris — IAP , 4-7/V/2009 – p. 6

  10. Boost from few objects 0.16 ) - m = 50 GeV Primary contribution +e LZP (m = 6 TeV) + Background from MS98 KK /(e 0.14 Total + positron fraction e Few massive subhalos are expected in the HEAT data 0.12 MW: Closest clump at ~0.25 kpc 0.1 ” − 1 “ M ∼ 100 × 10 8 M ⊙ 0.08 0.06 By chance , one or few could wander close to 0.04 the Earth ... 0.02 Predictions: move a single (or few) object(s) 2 1 10 10 E (GeV) Lavalle, Pochon, Salati & Taillet around astro-ph/0603796 Very small probability: fine tuned models 1 + e from WIMPs -1 10 smooth !!! ( ∼ O (10 3 − 4 )objects / MW volume ) Clump at 1 kpc -2 ] 10 -1 .sr -1 -3 .s 10 -1 .GeV Multimessenger analysis : check radio, γ -ray -4 10 -2 /dE [cm -5 10 and antiproton constraints -6 φ 10 d 3.5 E -7 10 Not a clean prediction of clumpiness ⇒ -8 10 What about global effects? . -9 10 -10 10 -1 2 10 1 10 10 E [GeV] Julien Lavalle, TANGO in Paris — IAP , 4-7/V/2009 – p. 6

  11. Boost from few objects 0.16 ) - m = 50 GeV Primary contribution +e LZP (m = 6 TeV) + Background from MS98 KK /(e 0.14 Total + positron fraction e Few massive subhalos are expected in the HEAT data 0.12 MW: Closest clump at ~0.12 kpc 0.1 ” − 1 “ M ∼ 100 × 10 8 M ⊙ 0.08 0.06 By chance , one or few could wander close to 0.04 the Earth ... 0.02 Predictions: move a single (or few) object(s) 2 1 10 10 E (GeV) Lavalle, Pochon, Salati & Taillet around astro-ph/0603796 Very small probability: fine tuned models 1 + e from WIMPs -1 10 smooth !!! ( ∼ O (10 3 − 4 )objects / MW volume ) Clump at 0.5 kpc -2 ] 10 -1 .sr -1 -3 .s 10 -1 .GeV Multimessenger analysis : check radio, γ -ray -4 10 -2 /dE [cm -5 10 and antiproton constraints -6 φ 10 d 3.5 E -7 10 Not a clean prediction of clumpiness ⇒ -8 10 What about global effects? . -9 10 -10 10 -1 2 10 1 10 10 E [GeV] Julien Lavalle, TANGO in Paris — IAP , 4-7/V/2009 – p. 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend