correlations and field theory inside the arctic circle
play

Correlations and field theory inside the arctic circle [or Arctic - PowerPoint PPT Presentation

Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Correlations and field theory inside the arctic circle [or Arctic quenches] ephan 1 Jean-Marie St 1 Max-Planck-Institut f ur Physik Complexer


  1. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Correlations and field theory inside the arctic circle [or Arctic quenches] ephan 1 Jean-Marie St´ 1 Max-Planck-Institut f¨ ur Physik Complexer Systeme (Dresden) Firenze 2015 in collaboration with N. Allegra, J. Dubail, M. Haque and J. Viti.

  2. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Outline Arctic circle in Statistical mechanics 1 Dimers Six vertex A simple toy model 2 Model and Motivations Correlations in the bulk Dirac action in curved space Consequences and generalizations 3 Dimers and vertex models Back to real time

  3. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Classical Dimers in 2d dimers with hardcore constraint. Exactly solvable: free fermions. Z = det ( . . . ) [Kasteleyn, Fisher] Critical system Long distance limit: Dirac field or free gaussian compact field S = g � dxdy ( ∇ ϕ ) 2 , ϕ = ϕ + 2 π 4 π � − 1 /g � − g C dd ( r , r ′ ) = � r − r ′ � C mm ( r , r ′ ) = � r − r ′ � � � ,

  4. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Aztec diamond, and the arctic circle [Jokusch, Propp and Shor, 1995]

  5. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Aztec diamond, and the arctic circle [Jokusch, Propp and Shor, 1995] Image at http://tuvalu.santafe.edu/ ∼ moore/gallery.html

  6. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Lots of variations on this Theory for the shape [Kenyon, Okounkov, Sheffield]

  7. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Can be induced by boundary conditions � T L y � � ψ 0 � � � Z = ψ 0

  8. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Density profile for dimers � � ρ ( x, y ) = 1 2 + 1 2 y − 1 √ π arctan 1 − 2 x 2 − 2 y 2 [Cohn, Elkies and Propp, Duke. Math. Journ 1996]

  9. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Six vertex with domain wall boundary conditions [Korepin, Izergin, Zinn-Justin, Colomo, Pronko,. . . ] Conjecture for the arctic curve [Colomo & Pronko, J. Stat. Phys 2010]

  10. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Field theory inside the circle?

  11. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations A simple toy model � c † | ψ 0 � = x | 0 � x< 0 H = − 1 � � � c † x c x +1 + h.c 2 x Imaginary time evolution � e − 2 RH � � ψ 0 � � � Z = ψ 0

  12. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Motivations (1/3) TASEP in continuous time [Rost, Zeit. Wahrs. 1981] . Arctic circle phenomenology. 2 R Quantum mechanics from a domain wall intial state. [Antal R´ acz R´ akos Sch¨ utz 1999 ; Antal Krapivsky R´ akos 2008 ; . . . ]

  13. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Motivation (2/3): Filling fraction quenches � � � c † j c j +1 + c † � ε k c † H = − j +1 c j = k c k j k Fermi level π k l k r Fermions, with certain Fermi levels ( k l , k r ) | ψ 0 � = | k l � ⊗ | k r � and let evolve with H ( k l + k r ) at time t > 0 2

  14. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Motivation (2/3): Filling fraction quenches Fermi level π k l k r Limiting cases: k l = π , k r = 0 is the domain wall quench. k l = k r [Eisler, Karevski, Platini & Peschel, 2008] [Calabrese & Cardy, 2008] [JMS & Dubail, 2011]

  15. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Motivation (3/3) low energy local quenches k l = k r � 2 � � � ψ 0 | e − τH tot | ψ 0 � � L ( τ ) = Keep in mind τ → it , but only at the end. F ( τ ) = − ln L ( τ ) is a free energy! [JMS & Dubail, 2011] L/ 2 L/ 2 τ

  16. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Motivation (3/3) low energy local quenches k l = k r � 2 � � � ψ 0 | e − τH tot | ψ 0 � � L ( τ ) = Keep in mind τ → it , but only at the end. F ( τ ) = − ln L ( τ ) is a free energy! [JMS & Dubail, 2011] Loschmidt echo L/ 2 L/ 2 F ( τ ) = c � L � πτ �� � � 4 ln π sinh � � L � � τ

  17. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Motivation (3/3) low energy local quenches k l = k r � 2 � � � ψ 0 | e − τH tot | ψ 0 � � L ( τ ) = Keep in mind τ → it , but only at the end. F ( τ ) = − ln L ( τ ) is a free energy! [JMS & Dubail, 2011] Loschmidt echo L/ 2 L/ 2 F ( τ ) = c � L � πτ �� � � 4 ln π sinh � � L � � Back to real time τ � � πt �� F ( t ) = c L � � 4 ln π sin � � L � �

  18. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Symmetric case L A = L B = L/ 2 The Loschmidt echo is periodic � �� F ( t ) = c L � πt � � 4 ln π sin � � L � � 1.4 L = 128 CFT 1.2 F ( τ ) = − log L ( τ ) 1 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 ( v F /L ) t = τ

  19. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Non symmetric case L A = L/ 3 Loschmidt echo a 3 ( a + 1) 6 ( a + 2)(2 a + 1) F ( a ) = c 4 ln L + c � � � � 24 ln � � ( a − 1) 7 � � a is one of the solutions of it = 2 L � 1 � b − 1 � + 2 � a − b �� 3 ln 3 ln π b + 1 a + b b 2 = a a + 2 2 a + 1

  20. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Non symmetric case L A = L/ 3 2.1 L=6144 2 CFT F ( τ ) = − log L ( τ ) 1.9 1.8 1.7 1.6 0 2 / 3 4 / 3 2 ( v F /L ) t = τ

  21. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Non symmetric case L A = L/ 3 2.1 L=6144 2 CFT F ( τ ) = − log L ( τ ) 1.9 1.8 1.7 1.6 0 2 / 3 4 / 3 2 ( v F /L ) t = τ 2 L A 2 L B 2 L t

  22. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Motivation (end) Here it is not that simple, because (need both!) 1 Conservation of the number of particles 2 Inhomogeneous initial state Naive low energy-field theory does not work.

  23. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Correlations inside the “circle” Want to compute = � ψ 0 | e − ( R + y ) H c † x e − ( y − y ′ ) H c x ′ e − ( R − y ′ ) H | ψ 0 � � � c † x ( y ) c x ′ ( y ′ ) � ψ 0 | e − 2 RH | ψ 0 � � c † ( k ) = e − ikx c † [ H, c † ( k )] = ε ( k ) c † ( k ) , x x ∈ Z

  24. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Appearance of the Hilbert transform � e − ( R − y ) H c † ( k ) e − ( y ′ − y ) H c ( k ′ ) e − ( R + y ) H � � � � ψ 0 � ψ 0 � � � � c † ( k, y ) c ( k ′ , y ′ ) = � ψ 0 | e − 2 RH | ψ 0 � One can show that = e − iR [˜ ε ( k ) − ˜ ε ( k ′ )] e yε ( k ) − y ′ ε ( k ′ ) � � c † ( k, y ) c ( k ′ , y ′ ) � k − k ′ + i 0 + � 2 i sin 2 � π dq 2 πε ( q ) cot k − q ε ( k ) = Hilbert transform of ε ( k ) = pv ˜ . 2 − π

  25. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Bosonisation trick c † ( k ) → : e iϕ ( k ) : c ( k ) → : e − iϕ ( k ) : c † ( k ) c ( k ) → ∂ϕ ( k ) Fusion of two vertex operators: : e αϕ ( k ) : : e βϕ ( k ′ ) := e αβ � ϕ ( k ) ϕ ( k ′ ) � : e αϕ ( k )+ βϕ ( k ′ ) : Need to define Normal order : c † x c x : � ϕ ( k ) ϕ ( k ′ ) � = log sin k − k ′ 2

  26. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Comments The result is exact. This completely solves the problem in principle. Real space correlations: inverse Fourier transform+stationary phase approximation. Stationary points x + iydε ( k ) + Rd ˜ ε ( k ) = 0 k dk

  27. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Density profile x ( y ) c x ( y ) � = 1 x � c † π arccos R 2 − y 2 � Z = e − R 2 / 2

  28. Arctic circle in Statistical mechanics A simple toy model Consequences and generalizations Dirac in curved space ψ † ( x, y ) + e i ( π/ 4+ θ ∗ ( x,y )) x = e − i ( π/ 4+ θ ( x,y )) † ( x, y ) c † √ √ ψ 2 π 2 π where e − 1 2 [ σ ( x,y )+ σ ( x ′ ,y ′ )] � � ψ † ( x, y ) ψ ( x ′ , y ′ ) = � � z ( x,y ) − z ( x ′ ,y ′ ) sin 2 R 2 − y 2 + i arcth y x z ( x, y ) = arcsin � R R 2 − x 2 − y 2 � θ ( x, y ) = − z ( x, y ) x − � R 2 − x 2 − y 2 σ ( x, y ) = log Dirac theory with a metric ds 2 = e 2 σ ( dx 2 + dy 2 )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend