correlation functions in loop models
play

Correlation functions in loop models Yacine Ikhlef LPTHE, Universit - PowerPoint PPT Presentation

Correlation functions in loop models Yacine Ikhlef LPTHE, Universit e Paris-6/CNRS collaborators: B. Estienne, J. Jacobsen, M. Picco, R. Santachiara, J. Viti June 2014 Giens Outline 1. Introduction 2. Computation of OPE constants 3.


  1. Correlation functions in loop models Yacine Ikhlef LPTHE, Universit´ e Paris-6/CNRS collaborators: B. Estienne, J. Jacobsen, M. Picco, R. Santachiara, J. Viti June 2014 Giens

  2. Outline 1. Introduction 2. Computation of OPE constants 3. Signature of Logarithmic CFT

  3. 1. Introduction

  4. A simple problem in the O( n ) loop model ◮ The lattice model: → W ( C ) = K # edges ( C ) n # loops ( C ) C = − � CFT with c = 1 − 6(1 − g ) 2 ◮ Scaling limit ( K > K c ): g n = − 2 cos π g , 0 < g < 1 ◮ Three-point connectivity � r 2 r 1 � � r 3 C P ( � r 1 ,� r 2 ,� r 3 ) = r 3 | ) 2 h ( | � r 1 − � r 2 || � r 2 − � r 3 || � r 1 − �

  5. The compact boson CFT [Nienhuis, Di Francesco-Saleur-Zuber, Alcaraz ’80s] ◮ Free-field action: � A [Φ] = g d 2 r ( ∇ Φ) 2 , Φ ≡ Φ + 2 π , Φ = ϕ ( z ) + ϕ (¯ z ) 4 π ◮ Vertex operators: V α, ¯ α ( z , ¯ z ) = exp[ i αϕ ( z ) + i ¯ αϕ (¯ z )] α rs = (1 − r ) √ g − (1 − s ) ( r , s ) ∈ Z 2 ◮ Lattice of charges: 2 √ g , 2 ◮ Spectrum of the O( n ) model: 1. Electric operators V 1 k = V α 1 k ,α 1 k , k ∈ Z ( V = 1 , ǫ . . . ) 2. Watermelon operators W me = V α me ,α − m , e , m = 1 , 2 , 3 . . . e ∈ Z / m W me = “(2 m -leg defect) × exp( ie Φ)”

  6. What is the operator algebra of the O( n ) model? ◮ Operator Product Expansion (OPE): � z − ¯ h a − ¯ h b +¯ ab z − h a − h b + h c ¯ h c O c (0)+ . . . C c O a ( z , ¯ z ) O b (0) ∼ z → 0 c ◮ Defines an operator algebra � C c O a × O b = ab O c c ◮ Questions ◮ Fusion rules and C c ab for the V 1 k ’s and W me ’s ? ◮ ⇒ consistent CFT with generic c < 1? ◮ Role of non-unitarity / indecomposability?

  7. Other CFTs with infinite operator algebras ◮ Liouville CFT ◮ Spectrum = scalar vertex ops. V α,α ◮ OPE constants by conformal bootstrap [Dorn-Otto,Zamolodchikov-Zamolodchikov,Teschner, 90’s] ◮ Analytic continuation to c < 1: “time-like Liouville” ◮ OPE coefficient C σσσ for percolation+FK connectivity [Delfino-Picco-Santachiara-Viti, ’12-’13] ◮ Logarithms in 4-pt functions [Santachiara-Viti, ’12-’13] ◮ Boundary O( n )/Potts models ◮ Spectrum = chiral vertex op. V 1 k ( z ) ◮ Fusion rules V 1 m × V 1 n → V 1 , | m − n | +1 + · · · + V 1 , m + n − 1 ◮ At c = 0 (polymers, perco.), T is a null-vector ( � TT � = 0) ⇒ Logarithmic CFT [ Gurarie, Rozansky-Saleur, Ludwig . . . ’90-’00s] � λ � 1 ◮ Exact Jordan cells in the lattice transfer matrix 0 λ [ Read, Saleur, Jacobsen, Pearce, Rasmussen, Zuber . . . ’00s]

  8. 2. Computation of OPE constants

  9. OPE constants from four-point functions (1/2) Conformal bootstrap program ◮ Correlation function C ( z , ¯ z ) = �O 1 (0) O 2 ( z , ¯ z ) O 3 (1) O 4 ( ∞ ) � � p ( z | ¯ h 1 , . . . , ¯ = X p ¯ p F p ( z | h 1 , . . . , h 4 ) F ¯ h 4 ) p , ¯ p ◮ Bases of conformal blocks V 1 (0) V 4 ( ∞ ) V 1 (0) V 4 ( ∞ ) ← → V p V q V 2 ( z ) V 3 (1) V 2 ( z ) V 3 (1) � F p ( z | h 1 , . . . , h 4 ) F q ( z | h 1 , . . . , h 4 ) � β pq � Change of basis: F p ( z ) = F q ( z ) q

  10. OPE constants from four-point functions (2/2) � β pq ¯ ◮ Monodromy invar. ⇒ ∀ q � = ¯ q β ¯ q X p ¯ p = 0 ( M ) p ¯ p , ¯ p ◮ Computing steps: 1. Matrix elements β pq are known, solve ( M ) for X p ¯ p 2. Interpret X p ¯ p as C ( O 1 , O 2 , O p ¯ p ) × C ( O p ¯ p , O 3 , O 4 ) 3. Extract ratios of the form C ( O 1 , O 2 , O p ¯ p ) / C ( O 1 , O 2 , O p ′ ¯ p ′ ) ◮ Variants ◮ Minimal models: [Dotsenko-Fateev ’85] ◮ F p = Q p H dw j . . . j =1 ◮ β pq obtained by contour deformation ◮ Liouville: [Teschner ’95] ◮ Set O 4 = V 12 or O 4 = V 21 , then F p = hypergeometric ◮ Obtain recursion relations C ( α 1 , α 2 , α + b − 1 / 2) C ( α 1 , α 2 , α + b / 2) C ( α 1 , α 2 , α − b / 2) = f , C ( α 1 , α 2 , α − b − 1 / 2) = g ◮ Unique solution C L ( α 1 , α 2 , α 3 ) as an explicit special function

  11. Some OPE constants in the O( n ) model [B. Estienne, YI] ◮ Method: ◮ Start with correlation function C ( z , ¯ z ) = �O 1 (0) O 2 ( z , ¯ z ) O 3 (1) O 4 ( ∞ ) � ( O j ∈ {V 1 k }∪{W me } ) ◮ The W me ’s have integer spin ⇒ monodromy unchanged ◮ Apply Teschner’s bootstrap with V 12 � V 21 / ∈ spectrum! ◮ Results: � C ( W me , W me , V 1 k ) = C L ( α me , α me , α 1 k ) C L ( α − m , e , α − m , e , α 1 k ) ◮ � C ( O 1 , O 2 , W m , e +1 ) C L ( α 1 , α 2 , α m , e +1 ) C L ( α 1 , α 2 , α m , e − 1 ) × C L (¯ α 1 , ¯ α 2 , α − m , e +1 ) C ( O 1 , O 2 , W m , e − 1 ) = ◮ C L (¯ α 1 , ¯ α 2 , α − m , e − 1 )

  12. Numerical transfer-matrix study [B. Estienne, YI] C ( W 12 , W 10 , W 10 ) / C ( W 10 , W 10 , W 10 ) n

  13. 3. Signature of Logarithmic CFT

  14. A surprising result ◮ Both analytical/numerical comp. ⇒ �W 12 W 10 W 10 � � = 0 . . . ◮ . . . in contradiction with general CFT argument: 1. W me has conformal weights ( h me , h me + me ) 2. ⇒ ( L − 2 − gL 2 − 1 ) W 12 is a “null vector” 3. [Null-vector cond.] ⇒ [PDE on �W 12 . . . � ] ⇒ [fusion rules] 4. Resulting fusion rule: W 12 × ( φ r 1 s 1 ⊗ ¯ s 1 ) → ( φ r 1 s 1 ± 1 ⊗ ¯ φ ¯ φ ¯ s 2 ) r 1 ¯ r 2 ¯ ◮ What could explain the violation of fusion rule: ◮ Null-vector does not decouple? ◮ Three-point function has non-standard form? ◮ ∃ non-normalisable states in the theory? ◮ Signatures of log CFTs ≡ models with indecomposable reps of Virasoro algebra!

  15. Insight from the lattice [B. Estienne, YI] ◮ In the continuum: ◮ |V 12 � has a null vector at level 2: | χ 12 � = ( L − 2 − gL 2 − 1 ) |V 12 � , � χ 12 | χ 12 � = 0 ◮ Two-fold degeneracy: | χ 12 � and |W 1 , − 2 � ( h 12 + 2 , h 12 ) ◮ On the lattice: ◮ Transfer matrix of loop model, acting on connectivity patterns ◮ Periodic Temperley-Lieb algebra, generic q | α � = e j = � ◮ D j = repr. with 2 j strings D j = repr. with ≤ 2 j strings � E k � ◮ H = − � 1 j e j has Jordan cells in � D 1 : 0 E k ◮ Energies: E k ≃ E gs + 2 π v F L (2 h 1 k + k )

  16. Summary and Perspectives ◮ Summary: ◮ Computed some OPE constants involving watermelon ops ◮ Method = extension of standard Dotsenko-Fateev approach ◮ Usual fusion rules are broken! ◮ O (n) model = bulk log CFT with generic c < 1 ◮ Infinite number of 2 × 2 Jordan cells ◮ Perspectives: ◮ Determine which null vectors fully decouple (e.g. L − 1 V 11 = 0?) ◮ Compute indecomposability constants b k ◮ Understand spatial dependence of 1,2,3-point functions ◮ Obtain full set of fusion rules/OPE constants

  17. Thank you for your attention!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend