correlation function and response function in shell model
play

Correlation function and response function in shell model of - PowerPoint PPT Presentation

Nonequilibrium Dynamics in Astrophysics and Material Science, 2011/11/2, Kyoto Univ. Correlation function and response function in shell model of turbulence T. Ooshida, M. Otsuki 1 , S. Goto 2 , A. Nakahara 3 , T. Matsumoto 4 Tottori U., Aoyama


  1. Nonequilibrium Dynamics in Astrophysics and Material Science, 2011/11/2, Kyoto Univ. Correlation function and response function in shell model of turbulence T. Ooshida, M. Otsuki 1 , S. Goto 2 , A. Nakahara 3 , T. Matsumoto 4 Tottori U., Aoyama Gakuin U. 1 , Okayama U. 2 , Nihon U. 3 , Kyoto U. 4 1

  2. Fluctuation response relation • X ( t ) : quantity of some statistically steady-state system (many degrees of freedom) – Auto correlation function ( � � : ensemble average ). C ( t − s ) = � X ( t ) X ( s ) � – Response function to fluctuation f ( t ) � δX ( t ) � G ( t − s ) = δf ( s ) ∫ t In an integral form, X ( t ) + δX ( t ) = X ( t ) + 0 G ( t − s ) f ( s ) ds . • Fluctuation response relation (fluctuation dissipation relation) G ( t − s ) = β C ( t − s ) ( β : inverse temperature in equilibrium systems). • Formal expression of the response function � � � X ( t ) ∂ ln ρ ( X, t ) � G ( t − s ) = − � ∂X � t = s ρ ( X, t ) : probability distribution function of X . If the distribution ρ is not Gaussian, G �∝ C in general! 2

  3. Typical examples • Correlation function C ( t − s ) = � X ( t ) X ( s ) � � � δX ( t ) G ( t − s ) = Response function δf ( s ) 1.2 1.2 G G β C C 1 1 0.8 0.8 C ( t − s ) , G ( t − s ) C ( t − s ) ,G ( t − s ) 0.6 0.6 0.4 0.4 0.2 0.2 0 0 -0.2 -0.2 0 0.002 0.004 0.006 0.008 0.01 0 0.5 1 1.5 2 2.5 t − s t − s Gaussian system G ∝ C non-Gaussian system G �∝ C 3

  4. Implication to statistical theory of turbulence • Incompressible Navier-Stokes eq. with forcing ∂ t u + ( u · ∇ ) u = −∇ p + ν ∇ 2 u + f , ∇ · u = 0 . (1) u ( k , t )e i k · x ] • Expression in the Fourier space [ u ( x , t ) = ∑ k ˆ 3 u j ( k , t ) = − i u j ( k , t ) + ˆ ∑ ∑ u m ( − q , t ) − ν | k | 2 ˆ ∂ t ˆ P jlm ( k ) u l ( − p , t )ˆ ˆ f j ( k , t ) 2 p , q l,m =1 k + p + q = o (2) Holy grail: closure eq. of the correlation func. C jl ( k , t, s ) = � ˆ u j ( k , t )ˆ u l ( − k , s ) � • Direct interaction approximation (DIA), (R.H. Kraichnan 1959) – Decompose ˆ u ⇒ ˆ u + δ ˆ u and get the linearized eq. of δ ˆ u from (2). � δ ˆ � u j ( k , t ) – Response func. of the linearized eq.: G jl ( k , t, s ) = δ ˆ u l ( − k , s ) – Closure eqs. of C and G (under statistical homogeneity and isotropy): [ ∂ t + νk 2 + F 1 ( C, k, t, t ′ )] C ( k, t, t ′ ) = 0 , [ ∂ t + νk 2 + F 1 ( C, k, t, t ′ )] G ( k, t, t ′ ) = 0 , ( ∂ t + 2 νk 2 ) C ( k, t, t ′ ) = ∫ t ∫ dk ′ ∫ dk ′′ F 2 ( k, k ′ , k ′′ ) −∞ dsC ( k ′ , t, t ′ )[ G ( k, t, t ′ ) C ( k ′′ , t, t ′ ) − G ( k ′ , t, t ′ ) C ( k, t, t ′ )] – These closure eqs. are solved by (naturally) assuming G ∝ C . 4

  5. • Our final goal is G and C of turbulence but.... � δ ˆ � u j ( k , t ) • Problem : calculation of the response function G jl ( k , t, s ) = δ ˆ u l ( − k , s ) is numerically costly ! • Less-costly models of turbulence – Turbulence in two dimensions – Burgers equation (Burgers turbulence) ∂ t u + ( u · ∇ ) u = ν ∇ 2 u . – “shell models” of turbulence – ... ∗ shell models (reduced dynamical-system models) · homogeneous, isotropic turbulence (Obukhov 1971; Gledzer 1973; Yamada & Ohkitani 1987). · thermal convection turbulence (Suzuki & Toh 1995). · magnetohydrodynamic (MHD) turbulence (Hattori & Ishizawa 2001). · quantum turbulence (Wacks & Barenghi 2011). · ... 5

  6. Dynamical-system model of turbulence: shell model • Gledzer-Ohkitani-Yamada shell model (Yamada & Ohkitani 1987) ( d ) dt + νk 2 u j ( t ) = i[ k j u j +2 u ∗ j +1 − 1 2 k j − 1 u j +1 u ∗ j − 1 − 1 2 k j − 2 u j − 1 u j − 2 ] + f j j · ∗ complex conjugate. k j = k 0 2 j ; u j ( t ) ∈ C ; j = 1 , . . . , N ; – “shell” : annulus in the wavenumber space 2 j ≤ | k | ≤ 2 j +1 – This is a minimalistic model of the Navier-Stokes eq. in the Fourier space ∑ u ( k , t )e i k · x , ˆ u ( x , t ) = k 3 u n ( k , t ) = − i u m ( − q , t ) + ˆ ∑ ∑ ( ∂ t + ν | k | 2 )ˆ P nlm ( k ) u l ( − p , t )ˆ ˆ f n ( k , t ) . 2 l,m =1 p , q k + p + q = o u j ( t ) of k j is a representative of ˆ u ( k , t ) in the j -th shell k j ≤ | k | ≤ k j +1 . • This Gledzer-Ohkitani-Yamada shell model has a lot of success. 6

  7. • Success of the Gledzer-Ohkitani-Yamada shell model ( d ) dt + νk 2 u j ( t ) = i[ k j u j +2 u ∗ j +1 − 1 2 k j − 1 u j +1 u ∗ j − 1 − 1 2 k j − 2 u j − 1 u j − 2 ] + f j j k j = k 0 2 j ; ( u j ( t ) ∈ C ; j = 1 , . . . , 24 ; f j is zero except f 1 = 0 . 5 + 0 . 5i ). The shell model can reproduce some characteristics of the Navier-Stokes turbulence. 10 2 10 0 10 0 k −5 / 3 − ζ p k j 10 −5 10 −2 〈 |u j | p 〉 |u j | 2 10 −4 k j 10 −10 10 −6 p= 2 , ζ 2 = 0 . 696 10 −15 p= 3 , ζ 3 = 1 . 00 10 −8 p= 4 , ζ 4 = 1 . 28 p= 5 , ζ 5 = 1 . 53 10 −20 10 −10 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 10 5 k j k j Energy spectrum | u j | 2 p -th order moments �| u j | p � ∝ k − ζ p j k j • Scaling exponents ζ p of the moments coincides with those of the NS turbulence �{ } p � [ u ( x + r ) − u ( r )] · r ∝ | r | ζ p . | r | 7

  8. Correlation and response functions of the shell model ( d ) dt + νk 2 u j ( t ) = i[ k j u j +2 u ∗ j +1 − 1 2 k j − 1 u j +1 u ∗ j − 1 − 1 2 k j − 2 u j − 1 u j − 2 ] + f j j k j = k 0 2 j ; ( u j ( t ) ∈ C ; j = 1 , . . . , 24 ; f j is zero except f 1 = 0 . 5 + 0 . 5i ) • Correlation and response functions in the inertial range 1.2 G C 1 0.8 C ( t − s ) , G ( t − s ) 0.6 10 0 0.4 k −5 / 3 10 −5 0.2 |u j | 2 k j 10 −10 0 10 −15 -0.2 0 0.5 1 1.5 2 2.5 10 −20 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 t − s k j � δu 11 ( t ) � G ( t − s ) = Re ( δu 11 ( s ) is purely real.) Response function δu 11 ( s ) Auto correlation function C ( t − s ) = � Re[ u 11 ( t )] Re[ u 11 ( s )] � (normalized) �{ Re[ u 11 ( t )] } 2 � 8

  9. • The fluctuation-dissipation relation G ∝ C breaks down for the shell model (Biferale et al . 2002). 10 0 1.2 G Gauss C 1 10 −1 0.8 10 −2 C ( t − s ) , G ( t − s ) 0.6 p.d.f. 10 −3 0.4 10 −4 0.2 10 −5 0 10 −6 -0.2 0 0.5 1 1.5 2 2.5 -10 -5 0 5 10 t − s Re[ u 11 ] / σ • An expression for this discrepancy between G and C for the shell model? ✓ ✏ After trial and error, we find : a relation between G and C can be obtained if we add noises to the shell model dt u j = i[ k j u j +2 u ∗ j +1 − 1 2 k j − 1 u j +1 u ∗ j − 1 − 1 2 k j − 2 u j − 1 u j − 2 ]+ f j − νk 2 d j u j + ξ j . ξ j : Gaussian white noise: � ξ j ( t ) � = 0 , � ξ j ( t ) ξ ∗ ℓ ( s ) � = 2 νk 2 j T δ j,ℓ δ ( t − s ) . ✒ ✑ 9

  10. Property of the shell model with noise dt u j = i[ k j u j +2 u ∗ d j +1 − 1 2 k j − 1 u j +1 u ∗ j − 1 − 1 2 k j − 2 u j − 1 u j − 2 ] − νk 2 j u j + f j + ξ j , � ξ j ( t ) ξ ∗ ℓ ( s ) � = 2 νk 2 j T δ j,ℓ δ ( t − s ) . 10 2 10 0 k -1 10 -2 10 -4 |u j | 2 / k j k -5/3 10 -6 T = 1.0 10 -1 10 -2 10 -8 10 -3 10 -4 10 -10 T = 0 10 -12 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 k j If “the heat bath temperature” T is small enough, the noisy model is close to the Navier-Stokes turbulence. 10

  11. C �∝ G The noisy shell model: correlation and response functions 2 k j − 2 u j − 1 u j − 2 ] − νk 2 d dt u j = i[ k j u j +2 u ∗ j +1 − 1 2 k j − 1 u j +1 u ∗ j − 1 − 1 j u j + f j + ξ j , ℓ ( s ) � = 2 νk 2 � ξ j ( t ) ξ ∗ j T δ j,ℓ δ ( t − s ) . 1 10 2 G 0.8 10 0 <u j (t) u * j (0)>/ <|u j (0)| 2 > k -5/3 10 -2 0.6 C(t), G(t) 10 -4 |u j | 2 / k j 0.4 10 -6 0.2 10 -8 T = 10 -4 0 10 -10 T = 0 10 -12 -0.2 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 0 0.2 0.4 0.6 0.8 1 k j t 10 0 Gauss 10 -1 10 -2 10 -3 P.D.F. 10 -4 10 -5 10 -6 10 -7 10 -8 -15 -10 -5 0 5 10 15 Re[ u 14 ]/ σ 11

  12. Noisy shell model: Correlation function C and response function G 2 k j − 2 u j − 1 u j − 2 ] − νk 2 dt u j = i[ k j u j +2 u ∗ d j +1 − 1 2 k j − 1 u j +1 u ∗ j − 1 − 1 j u j + f j + ξ j , ℓ ( s ) � = 2 νk 2 � ξ j ( t ) ξ ∗ j T δ j,ℓ δ ( t − s ) . 1 G 0.8 H 10 2 <u j (t) u * j (0)>/ <|u j (0)| 2 > 0.6 10 0 C(t), G(t) k -5/3 10 -2 0.4 10 -4 |u j | 2 / k j 0.2 10 -6 10 -8 0 T = 10 -4 10 -10 T = 0 -0.2 10 -12 0 0.2 0.4 0.6 0.8 1 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 t k j δu j ( t ) C jj ( t ) = � u j ( t ) u ∗ G jj ( t ) = j (0) � , δu j (0) , 1 1 [ ] � u j ( t )Λ ∗ j (0) � + � u j (0)Λ ∗ H jj ( t ) = T C jj ( t ) − j ( t ) � . 2 νk 2 j T (Λ j ( t ) = i[ k j u j +2 u ∗ 2 k j − 1 u j +1 u ∗ j +1 − 1 j − 1 − 1 2 k j − 2 u j − 1 u j − 2 ] + f j ) . 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend