core chasing algorithms for the eigenvalue problem
play

Core-Chasing Algorithms for the Eigenvalue Problem David S. Watkins - PowerPoint PPT Presentation

Core-Chasing Algorithms for the Eigenvalue Problem David S. Watkins Department of Mathematics Washington State University HHXX, Virginia Tech, June 20, 2017 David S. Watkins Core-Chasing Algorithms Our International Research Group


  1. Core Chasing � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  2. Core Chasing � � � � � � � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  3. Core Chasing � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  4. Core Chasing � � � � � � � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  5. Core Chasing � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  6. Core Chasing � � � � � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  7. Core Chasing � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  8. Core Chasing � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  9. Flop Count Cost David S. Watkins Core-Chasing Algorithms

  10. Flop Count Cost O ( n 3 ) total flops O ( n 2 ) storage about the same as for standard Francis iteration. David S. Watkins Core-Chasing Algorithms

  11. Advantages Are there any advantages? David S. Watkins Core-Chasing Algorithms

  12. Advantages Are there any advantages? superior deflation procedure David S. Watkins Core-Chasing Algorithms

  13. Advantages Are there any advantages? superior deflation procedure some structured cases David S. Watkins Core-Chasing Algorithms

  14. Deflation Standard deflation criterion: × × × × × David S. Watkins Core-Chasing Algorithms

  15. Deflation Standard deflation criterion: × × × × × Set a j +1 , j to zero if | a j +1 , j | < u ( | a j , j | + | a j +1 , j +1 | ) . ( u is unit roundoff .) David S. Watkins Core-Chasing Algorithms

  16. Deflation Our deflation criterion: � � � � � � � � � �  I  − s j c j   Q j =   s j c j   I David S. Watkins Core-Chasing Algorithms

  17. Deflation Our deflation criterion: � � � � � � � � � �  I  − s j c j   Q j =   s j c j   I Set s j to zero if | s j | < u . ( u is unit roundoff .) David S. Watkins Core-Chasing Algorithms

  18. Deflation Both criteria are normwise backward stable. David S. Watkins Core-Chasing Algorithms

  19. Deflation Both criteria are normwise backward stable. How does this affect eigenvalues? David S. Watkins Core-Chasing Algorithms

  20. Deflation Both criteria are normwise backward stable. How does this affect eigenvalues? Change in λ depends on condition number κ ( λ ). David S. Watkins Core-Chasing Algorithms

  21. Deflation Both criteria are normwise backward stable. How does this affect eigenvalues? Change in λ depends on condition number κ ( λ ). Standard result: λ is perturbed to µ , where | λ − µ | ≤ u κ ( λ ) � A � + O ( u 2 ) . David S. Watkins Core-Chasing Algorithms

  22. Deflation Both criteria are normwise backward stable. How does this affect eigenvalues? Change in λ depends on condition number κ ( λ ). Standard result: λ is perturbed to µ , where | λ − µ | ≤ u κ ( λ ) � A � + O ( u 2 ) . This holds for both deflation criteria. David S. Watkins Core-Chasing Algorithms

  23. Deflation But our criterion does better: David S. Watkins Core-Chasing Algorithms

  24. Deflation But our criterion does better: Theorem (Mach and Vandebril (2014) ) | λ − µ | ≤ u κ ( λ ) | λ | + O ( u 2 ) . David S. Watkins Core-Chasing Algorithms

  25. Deflation But our criterion does better: Theorem (Mach and Vandebril (2014) ) | λ − µ | ≤ u κ ( λ ) | λ | + O ( u 2 ) . Relative perturbation in each λ is tiny. David S. Watkins Core-Chasing Algorithms

  26. Deflation But our criterion does better: Theorem (Mach and Vandebril (2014) ) | λ − µ | ≤ u κ ( λ ) | λ | + O ( u 2 ) . Relative perturbation in each λ is tiny. This does not hold for standard deflation criterion. David S. Watkins Core-Chasing Algorithms

  27. Deflation Fun Example: David S. Watkins Core-Chasing Algorithms

  28. Deflation Fun Example: � 1 � 2 A = (0 < ǫ < u ) ǫ ǫ David S. Watkins Core-Chasing Algorithms

  29. Deflation Fun Example: � 1 � 2 A = (0 < ǫ < u ) ǫ ǫ λ 1 = 1 + 2 ǫ + O ( ǫ 2 ) λ 2 = − ǫ + O ( ǫ 2 ) David S. Watkins Core-Chasing Algorithms

  30. Deflation Fun Example: � 1 � 2 A = (0 < ǫ < u ) ǫ ǫ λ 1 = 1 + 2 ǫ + O ( ǫ 2 ) λ 2 = − ǫ + O ( ǫ 2 ) These eigenvalues are well conditioned. David S. Watkins Core-Chasing Algorithms

  31. Deflation Fun Example: � 1 � 2 A = (0 < ǫ < u ) ǫ ǫ λ 1 = 1 + 2 ǫ + O ( ǫ 2 ) λ 2 = − ǫ + O ( ǫ 2 ) These eigenvalues are well conditioned. Standard criterion deflates to � 1 � 2 . 0 ǫ David S. Watkins Core-Chasing Algorithms

  32. Deflation Fun Example: � 1 � 2 A = (0 < ǫ < u ) ǫ ǫ λ 1 = 1 + 2 ǫ + O ( ǫ 2 ) λ 2 = − ǫ + O ( ǫ 2 ) These eigenvalues are well conditioned. Standard criterion deflates to � 1 � 2 . 0 ǫ Eigenvalues are µ 1 = 1 and µ 2 = ǫ . David S. Watkins Core-Chasing Algorithms

  33. Deflation Fun Example: � 1 � 2 A = (0 < ǫ < u ) ǫ ǫ λ 1 = 1 + 2 ǫ + O ( ǫ 2 ) λ 2 = − ǫ + O ( ǫ 2 ) These eigenvalues are well conditioned. Standard criterion deflates to � 1 � 2 . 0 ǫ Eigenvalues are µ 1 = 1 and µ 2 = ǫ . Small eigenvalue is off by 200%. David S. Watkins Core-Chasing Algorithms

  34. Deflation Example, continued: David S. Watkins Core-Chasing Algorithms

  35. Deflation Example, continued: � 1 � 2 A = (0 < ǫ < u ) ǫ ǫ λ 1 = 1 + 2 ǫ + O ( ǫ 2 ) λ 2 = − ǫ + O ( ǫ 2 ) David S. Watkins Core-Chasing Algorithms

  36. Deflation Example, continued: � 1 � 2 A = (0 < ǫ < u ) ǫ ǫ λ 1 = 1 + 2 ǫ + O ( ǫ 2 ) λ 2 = − ǫ + O ( ǫ 2 ) Our criterion: � 1 � � 1 − ǫ 2 � A = QR ≈ . 1 0 − ǫ ǫ David S. Watkins Core-Chasing Algorithms

  37. Deflation Example, continued: � 1 � 2 A = (0 < ǫ < u ) ǫ ǫ λ 1 = 1 + 2 ǫ + O ( ǫ 2 ) λ 2 = − ǫ + O ( ǫ 2 ) Our criterion: � 1 � � 1 − ǫ 2 � A = QR ≈ . 1 0 − ǫ ǫ Deflates to � 1 � � 1 � 1 � � 0 2 2 = . 0 1 0 − ǫ 0 − ǫ David S. Watkins Core-Chasing Algorithms

  38. Deflation Example, continued: � 1 � 2 A = (0 < ǫ < u ) ǫ ǫ λ 1 = 1 + 2 ǫ + O ( ǫ 2 ) λ 2 = − ǫ + O ( ǫ 2 ) Our criterion: � 1 � � 1 − ǫ 2 � A = QR ≈ . 1 0 − ǫ ǫ Deflates to � 1 � � 1 � 1 � � 0 2 2 = . 0 1 0 − ǫ 0 − ǫ Eigenvalues are µ 1 = 1 and µ 2 = − ǫ . David S. Watkins Core-Chasing Algorithms

  39. Deflation Example, continued: � 1 � 2 A = (0 < ǫ < u ) ǫ ǫ λ 1 = 1 + 2 ǫ + O ( ǫ 2 ) λ 2 = − ǫ + O ( ǫ 2 ) Our criterion: � 1 � � 1 − ǫ 2 � A = QR ≈ . 1 0 − ǫ ǫ Deflates to � 1 � � 1 � 1 � � 0 2 2 = . 0 1 0 − ǫ 0 − ǫ Eigenvalues are µ 1 = 1 and µ 2 = − ǫ . Both eigenvalues are accurate. David S. Watkins Core-Chasing Algorithms

  40. Exploitation of Structure Structures we can exploit David S. Watkins Core-Chasing Algorithms

  41. Exploitation of Structure Structures we can exploit unitary David S. Watkins Core-Chasing Algorithms

  42. Exploitation of Structure Structures we can exploit unitary companion matrix (unitary-plus-rank-one) David S. Watkins Core-Chasing Algorithms

  43. Exploitation of Structure Structures we can exploit unitary companion matrix (unitary-plus-rank-one) unitary-plus-low-rank David S. Watkins Core-Chasing Algorithms

  44. Unitary Case David S. Watkins Core-Chasing Algorithms

  45. Unitary Case � � � � � A = QR = � � � � � David S. Watkins Core-Chasing Algorithms

  46. Unitary Case � � � � � A = QR = � � � � � David S. Watkins Core-Chasing Algorithms

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend