core chasing algorithms for the eigenvalue problem
play

Core-Chasing Algorithms for the Eigenvalue Problem David S. Watkins - PowerPoint PPT Presentation

Core-Chasing Algorithms for the Eigenvalue Problem David S. Watkins Department of Mathematics Washington State University July, 2016 David S. Watkins Core-Chasing Algorithms Our International Research Group This is joint work with (Oxford


  1. Core Chasing � � � � � � � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  2. Core Chasing � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  3. Core Chasing � � � � � � � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  4. Core Chasing � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  5. Core Chasing � � � � � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  6. Core Chasing � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  7. Core Chasing � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  8. Cost David S. Watkins Core-Chasing Algorithms

  9. Cost Most arithmetic in passing-through operation David S. Watkins Core-Chasing Algorithms

  10. Cost Most arithmetic in passing-through operation O ( n 2 ) flops per iteration . . . O ( n 3 ) total flops . . . about the same as for standard Francis iteration. David S. Watkins Core-Chasing Algorithms

  11. Are there any advantages? David S. Watkins Core-Chasing Algorithms

  12. Are there any advantages? unitary case David S. Watkins Core-Chasing Algorithms

  13. Are there any advantages? unitary case companion case (unitary-plus-rank-one) David S. Watkins Core-Chasing Algorithms

  14. Unitary Case David S. Watkins Core-Chasing Algorithms

  15. Unitary Case � � � � � A = QR = � � � � � David S. Watkins Core-Chasing Algorithms

  16. Unitary Case � � � � � A = QR = � � � � � David S. Watkins Core-Chasing Algorithms

  17. Unitary Case � � � � � A = QR = � � � � � David S. Watkins Core-Chasing Algorithms

  18. Unitary Case � � � � � A = QR = � � � � � Cost is O ( n ) flops per iteration, David S. Watkins Core-Chasing Algorithms

  19. Unitary Case � � � � � A = QR = � � � � � Cost is O ( n ) flops per iteration, O ( n 2 ) flops total. David S. Watkins Core-Chasing Algorithms

  20. Unitary Case � � � � � A = QR = � � � � � Cost is O ( n ) flops per iteration, O ( n 2 ) flops total. Storage requirement is O ( n ). David S. Watkins Core-Chasing Algorithms

  21. Unitary Case � � � � � A = QR = � � � � � Cost is O ( n ) flops per iteration, O ( n 2 ) flops total. Storage requirement is O ( n ). Gragg (1986) David S. Watkins Core-Chasing Algorithms

  22. Unitary Case � � � � � A = QR = � � � � � Cost is O ( n ) flops per iteration, O ( n 2 ) flops total. Storage requirement is O ( n ). Gragg (1986) Ammar, Reichel, M. Stewart, Bunse-Gerstner, Elsner, He, W, . . . David S. Watkins Core-Chasing Algorithms

  23. Companion Case David S. Watkins Core-Chasing Algorithms

  24. Companion Case p ( x ) = x n + a n − 1 x n − 1 + a n − 2 x n − 2 + · · · + a 0 = 0 monic polynomial David S. Watkins Core-Chasing Algorithms

  25. Companion Case p ( x ) = x n + a n − 1 x n − 1 + a n − 2 x n − 2 + · · · + a 0 = 0 monic polynomial companion matrix   0 · · · 0 − a 0 1 0 · · · 0 − a 1    . .  ... . .   A = 1 . .    ...   0 − a n − 2    1 − a n − 1 . . . get the zeros of p by computing the eigenvalues. David S. Watkins Core-Chasing Algorithms

  26. Companion Case p ( x ) = x n + a n − 1 x n − 1 + a n − 2 x n − 2 + · · · + a 0 = 0 monic polynomial companion matrix   0 · · · 0 − a 0 1 0 · · · 0 − a 1    . .  ... . .   A = 1 . .    ...   0 − a n − 2    1 − a n − 1 . . . get the zeros of p by computing the eigenvalues. MATLAB’s roots command David S. Watkins Core-Chasing Algorithms

  27. Cost of solving companion eigenvalue problem David S. Watkins Core-Chasing Algorithms

  28. Cost of solving companion eigenvalue problem If structure not exploited: O ( n 2 ) storage, O ( n 3 ) flops Francis’s algorithm David S. Watkins Core-Chasing Algorithms

  29. Cost of solving companion eigenvalue problem If structure not exploited: O ( n 2 ) storage, O ( n 3 ) flops Francis’s algorithm If structure exploited: O ( n 2 ) flops O ( n ) storage, several methods proposed data-sparse representation + Francis’s algorithm David S. Watkins Core-Chasing Algorithms

  30. Representation of R We store the QR decomposed form. � � � � � A = QR = � � � � � David S. Watkins Core-Chasing Algorithms

  31. Representation of R We store the QR decomposed form. � � � � � A = QR = � � � � � where   1 0 · · · − a 1 1 − a 2   R = .  ...  .  .   .  − a 0 David S. Watkins Core-Chasing Algorithms

  32. Representation of R We store the QR decomposed form. � � � � � A = QR = � � � � � where   1 0 · · · − a 1 1 − a 2   R = .  ...  .  .   .  − a 0 This is unitary-plus-rank-one. David S. Watkins Core-Chasing Algorithms

  33. Representation of R We store the QR decomposed form. � � � � � A = QR = � � � � � where   1 0 · · · − a 1 1 − a 2   R = .  ...  .  .   .  − a 0 This is unitary-plus-rank-one. How do we store it? David S. Watkins Core-Chasing Algorithms

  34. Representation of R Jared covered this yesterday. David S. Watkins Core-Chasing Algorithms

  35. Representation of R Jared covered this yesterday. Add a row and column to R . David S. Watkins Core-Chasing Algorithms

  36. Representation of R Jared covered this yesterday. Add a row and column to R .   1 0 · · · − a 1 0 1 − a 2 0   . .  ...  ˜ . . R =  . .  .     − a 0 1   0 0 · · · 0 0 David S. Watkins Core-Chasing Algorithms

  37. Representation of R Jared covered this yesterday. Add a row and column to R .   1 0 · · · − a 1 0 1 − a 2 0   . .  ...  ˜ . . R =  . .  .     − a 0 1   0 0 · · · 0 0 This is still unitary-plus-rank-one. David S. Watkins Core-Chasing Algorithms

  38. Representation of R ˜ R = David S. Watkins Core-Chasing Algorithms

  39. Representation of R ˜ 1 ( B 1 · · · B n + e 1 y T ) R = C ∗ n · · · C ∗ David S. Watkins Core-Chasing Algorithms

  40. Representation of R ˜ 1 ( B 1 · · · B n + e 1 y T ) R = C ∗ n · · · C ∗ � � � � � � � � � � + · · · � � � � � � � � � � � � � � David S. Watkins Core-Chasing Algorithms

  41. Representation of R ˜ 1 ( B 1 · · · B n + e 1 y T ) R = C ∗ n · · · C ∗ � � � � � � � � � � + · · · � � � � � � � � � � � � � � . . . and we don’t have to store the rank-one part! David S. Watkins Core-Chasing Algorithms

  42. Representation of R ˜ 1 ( B 1 · · · B n + e 1 y T ) R = C ∗ n · · · C ∗ � � � � � � � � � � + · · · � � � � � � � � � � � � � � . . . and we don’t have to store the rank-one part! Storage is O ( n ). David S. Watkins Core-Chasing Algorithms

  43. Passing a core transformation through R � � � � David S. Watkins Core-Chasing Algorithms

  44. Passing a core transformation through R � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � C ∗ n · · · C ∗ B 1 · · · B n 1 David S. Watkins Core-Chasing Algorithms

  45. Passing a core transformation through R � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � C ∗ n · · · C ∗ B 1 · · · B n 1 Cost: O ( n ) flops per iteration, O ( n 2 ) flops total. David S. Watkins Core-Chasing Algorithms

  46. The rank-one part Recovering y T from the core transformations David S. Watkins Core-Chasing Algorithms

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend