control of powertrain systems at the high efficiency limit
play

Control of Powertrain Systems at the High Efficiency Limit Anna G. - PDF document

Control of Powertrain Systems at the High Efficiency Limit Anna G. Stefanopoulou, University of Michigan annastef@umich.edu Thanks to the National Science Foundation US Department of Energy US Army with Ford, Bosch, GE,


  1. � Control of Powertrain Systems � at the High Efficiency Limit � Anna G. Stefanopoulou, University of Michigan annastef@umich.edu Thanks to the National Science Foundation US Department of Energy US Army with Ford, Bosch, GE, A123/Navitas, & Daimler Powertrain ! Control ! American n Co Cont ntrol Co Conf nferenc nce ,June une 2014 (1)/46 Outline -- Chaotic Engines � -- Stressed-out Batteries � � -- Dead-ended Fuel Cells � Powertrain ! Control ! (2)/46

  2. Global Temperature Change Industrial 10% Commercial 2% Residential 3% Carbon Dioxide (other) 20% Electric Power Methane, NO, F-gases 22% 23% Carbon Dioxide (fossil fuel use) 57% Transportation 20% Commercial 5% Passenger 15% Powertrain ! Control ! (3)/46 A Glance around the Globe Powertrain ! Control ! (4)/46

  3. History Lessons (US-focused) Powertrain ! Control ! (5)/46 Slow ..? Slender … ? No .., just better! Powertrain ! Control ! (6)/46

  4. Enabling Act..uat..ors Behind-the-Scenes Turbocharging Downsizing Direct Injection Variable Valve Carburetor Multi-Valve gal/100mi/HP Port Fuel Injection And some of the real Actors Port Fuel Injection Jessy’s Air Charge Estimator Variable Ilya @ Ford Valve Timing Anna’s PhD Mrdjan’s diVCT Powertrain ! Control ! (7)/46 Gasoline Engine Efficiency A A Midsize US US Car: 3800 lb lbs Km/h 1700 1700 kgs kgs V6, 3.6L 350 10 FTP − 75 sec 300 1 -- Ford, with its Ecoboost 250 Engine Load [Nm] Sweet turbocharging technology, makes Time / 1877s [%] spot a small engine act big . 0.1 200 -- GM, with its Active Fuel 150 Management cylinder 0.01 deactivation system, makes a big engine act small. 100 0.001 R. Truett, Auto News, Jan 6, 2014 50 0 0.0001 1000 1500 2000 2500 3000 3500 Engine Speed [RPM] Powertrain ! Control ! (8)/46

  5. Efficiency Improvement: Downsizing Original Turbocharged 3.6L V6 2.0L I4 5. Cnv Efficiency Improvements % 4. v/eTC 350 Worst 3. thr/wg FTP − 75 2. TC-Dnsz 0 0 300 5 1. Dnsz − 0 5 10 5 Engine Load [Nm] − 250 0 200 5 − − 1 − 15 0 150 − 5 5% 100 Controlling the 5 10% − 1 0 − 5 − Dynamics − 5 − 15 0 1 50 − − 20 20% 1 5 − − 20 − 25 2 5 − 2 5 − 3500 1000 1500 2000 2500 3000 3500 Engine Speed [RPM] Powertrain ! Control ! (9)/46 Efficiency Improvement: Downsizing Original Turbocharged 3.6L V6 2.0L I4 5. Cnv Efficiency Improvements % 4. v/eTC Worst 3. thr/wg Worst 2. TC-Dnsz 1. Dnsz 5% Controlling the 10% Dynamics 20% Powertrain ! Control ! (10)/46

  6. Cost effectiveness PHEV MPGe EV (estimated) HEV PHEV MPG DIESEL TRBDS--2 TRBDS--1 GDI VVL 12V BAS Micro-HEV VVT FR ** Powertrain ! Control ! Cost effectiveness PHEV MPGe EV (estimated) HEV PHEV MPG ? DIESEL TRBDS--2 TRBDS--1 GDI VVL 12V BAS Micro-HEV VVT FR ** Powertrain ! Control !

  7. Gasoline versus Diesel SCR+ … $ ...$ TWC Exhaust After- Treatment Hot Flame Region: NOx Hot Flame Region: NOx&Soot Gasoline Stoichiometric � Lean � Diesel Spark Compression Ignition (SI) Ignition (CI) Powertrain ! Control ! (13)/46 Gasoline HCCI Diesel Car Makers Seek New Spark In Gas Engines The Wall Street Journal 09/28/04 � … engineers call homogenous-charge compression-ignition, or HCCI and expected to provide 80% of the efficiency of a hybrid or a diesel for 20% of the cost , … � � SI HCCI CI Peak Temperature (K) >2000 1600 1800 NOx emission High Low Medium Combustion Duration (CAD) 40 2-10 40 Powertrain ! Control ! (14)/46

  8. Actuators, Sensors, & Performance Objective Gasoline Systems - HCCI Combustion phasing controlled through trapped dilution In-cylinder pressure sensor Variable Valve Injector θ 50 50 " ref " θ 50 Controller 50 Powertrain ! Control ! HCCI Model Combustion Homogeneous Charge Chemical Kinetics= Arrhenius Integral Powertrain ! Control ! (16)/46

  9. Stable, Unstable, and Limit Cycle Behavior Automotive Engineering SAE 2002-01-0111 – Lund Combustion Regions with Stable and Unstable operation ASME ICE 2000 – Caterpillar Limit cycle behavior SAE 892068– Southwest Research Institute Very Stable and Unstable behavior at different regions Chiang CDC 2004 & TCST 2004 Stability in auto-thermal Blow-Down Temperature, T bd (K) reactors Heerden 1953, Liljenroth 1918 Unstable Limit Stable Cycle Early Combustion Phasing Intake Temperature, T ivc (K) Powertrain ! Control ! (17)/46 Drive around Stable Points! Combustion Clean or Efficient? An Engine Goes for ‘Both of the Above’ By LINDSAY BROOKE August 19, 2007 Chiang CDC 2004 & Chiang, IEEE-TCST 2004 BlowDown Temperature, T bd (K) SAE-2009-01-1131 Early Combustion Phasing Intake Temperature, T ivc (K) Powertrain ! Control ! (18)/46

  10. Controlling Stable, Unstable, and Limit Cycle Behavior CDC 2004 NYT 2007 SAE 2009 @MSU @Alberta, CA @Cambridge, UK @Chalmers, Se @Univ. of Minnesota Gerdes’s team @ Stanford Switching gains (2011) Tunestal’s team @ Lund Nonlinear MPC (2009) Anna’s team @ UMICH Nonlinear Cntr Lyapunov functions (2006) Powertrain ! Control ! (19)/46 Observations from the high variability points Heat Release Analysis Powertrain ! Control ! (20)/46

  11. Detailed Heat Release Observations Key factors for describing CV Nonlinear coupling between ! the recycled thermal energy ! the recycled chemical energy in the unburned fuel Powertrain ! Control ! (21)/46 Model that captures the global behavior ! Period doubling bifurcations ! Thermal runaway ! Noisy simulations match the data Powertrain ! Control ! (22)/46

  12. Controlling Combustion at its Limit Combustion Phasing ( θ 50 ) Injection Timing (u soi ) Powertrain ! Control ! HCCI Control Toolbox ~Torque Moderate � Transient � Avoided Misfire � Phasing Powertrain ! Control ! (24)/46

  13. HCCI Control Toolbox ~Torque Did not slow down � Phasing Reduced Ringing � Powertrain ! Control ! Mode Transitions Significant number of mode transitions during driving cycle! Powertrain ! Control ! (26)/46

  14. To Jump … or not to Jump Powertrain ! Control ! (27)/46 Cost effectiveness of engine technologies PHEV MPGe * EV (estimated) 2025 Target HEV PHEV MPG * HCCI DIESEL TRBDS--2 TRBDS--1 GDI VVL 12V BAS Micro-HEV VVT FR ** Data Sources: 1. Assessment of Fuel Economy Technologies for Light-Duty Vehicles (2011) National Research Council Powertrain ! Control ! 2. * www.fueleconomy.gov DOE & EPA website (MPGe : 1 Gallon of Gasoline = 33.7 kWh) 3. **MPG baseline 2008 midsize cars. NHTSA stats (2014)

  15. The Rational Business Perspective Fuel Price, $ per gallon 2014 Tesla R 04/08 Battery Prices, $/kWh *8 years payback 2012 posting in http://www.washingtonpost.com/ Powertrain ! Control ! (29)/46 Removing the Blinders from Dr. Ilan Gur, ARPA-E Program Director Model-Based Estimation What we Control Current Coolant Flow and Temp Powertrain ! Control ! (30)/46

  16. The Operating Principle LiCoO 2 LiCoO 2 6C+LiCoO 2 " Li x C 6 +Li 1-x CoO 2 +Heat +Swelling Powertrain ! Control ! (31)/46 Graphics from K.Smith, CSM 2010 Models for Electrical State Estimation I Electro-Chemical V x Coupled Diffusion-Reaction Negative electrode (-) Positive electrode (+) Current collector Current collector Fuller et al., 1994; Separator Ramadass et al., 2003; Fathy & Moura, 2011 … x= 0 x= L n x= L n +L s x= L n +L s +L p C 1,n C 1,p Parameter C 12,p C 12,n Li + e - e - r r identification Computation time is difficult I Single-Particle V Model Negative electrode (-) Positive electrode (+) Ning and Popov, 2004; Current collector Current collector C 1,n C 1,p Subramanian et al., 2005; Separator C 12,p C 12,n Di Domenico et al., 2010 r r CY Wang, 2014 Li + e - e - … x= 0 x= L n x= L n +L s x= L n +L s +L p Equivalent-Circuit Model Yurkovich, 2009 Perez et al., 2012; Prasad and Rahn, 2012; Hu et al., 2012 Fidelity Powertrain ! Control ! (32)/46

  17. Models for Thermal State Estimation Distributed Parameter 0.015 31.2 0.01 31 0.005 30.8 Gu and Wang, 2000; 30.6 0 Kumaresan et al., 2008; 30.4 30.2 Lee et al., 2010; -0.005 30 Fleckenstein et al. 2011; -0.01 29.8 29.6 -0.015 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 Reduced-Order Computation time Muratori et al., 2010; Muratori et al., 2012 Lumped Parameter Equivalent-Circuit Mahamud and Park, 2011; Park and Jaura, 2003; Forgez et al., 2010; Lin et al., 2013 Fidelity Powertrain ! Control ! (33)/46 Models for Thermal State Estimation Distributed Parameter 0.015 31.2 0.01 31 0.005 30.8 Gu and Wang, 2000; 30.6 0 Kumaresan et al., 2008; 30.4 30.2 Lee et al., 2010; -0.005 30 Fleckenstein et al. 2011; -0.01 29.8 29.6 -0.015 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 Reduced-Order Muratori et al., 2010; Muratori et al., 2012 Pack Level Lumped Parameter Equivalent-Circuit Mahamud and Park, 2011; Park and Jaura, 2003; Forgez et al., 2010; Lin et al., 2013 Fidelity Powertrain ! Control ! (34)/46

  18. Powering at the Operational Limits T1 T2 T4 T3 Powertrain ! Control ! (35)/46 Powering at the Operational Limits T1 T2 T4 T3 Powertrain ! Control ! (36)/46

  19. Neutron Imaging: Lithium Concentration & Expansion Reactor Core Nationa nal Ins nstitut ute of Stand ndards and nd Techno hnology (NIST) T) 24 MW Reactor Powertrain ! Control ! (37)/46 Neutron Imaging: Lithium Concentration & Expansion Reactor Core Dark Areas= High Lithium Concentration Powertrain ! Control ! (38)/46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend