continuous wavelet transforms
play

Continuous Wavelet Transforms Part I (Discrete to Follow) Rubin H - PowerPoint PPT Presentation

Continuous Wavelet Transforms Part I (Discrete to Follow) Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Pez, & Bordeianu with Support from the National Science Foundation Course:


  1. Continuous Wavelet Transforms Part I (Discrete to Follow) Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from the National Science Foundation Course: Computational Physics II 1 / 1

  2. Time 9 0 1 2 3 4 5 6 7 8 Problem: Multiple Frequencies in Time Non Stationary Signals Numerical signal OK Amount ω i at each t ? Here analytic: ∆ number of ω ’s in t  sin 2 π t , for 0 ≤ t ≤ 2 ,     y ( t ) = 5 sin 2 π t + 10 sin 4 π t , for 2 ≤ t ≤ 8 ,     2 . 5 sin 2 π t + 6 sin 4 π t + 10 sin 6 π t , for 8 ≤ t ≤ 12 . 2 / 1

  3. Why Not Fourier Analysis? Fourier Limitation: amount of sin ( n ω t ) pgflastimage No time resolution OK for stationary signals Fourier: correlated ω i ’s Not OK for Problem Poor data compression; Fourier: all ω i all time recompute c i 3 / 1

  4. 1.0 t 2 0 –2 –4 –6 t 0.5 0.0 –0.5 –1.0 ψ 4 6 0 –4 1.0 0.0 4 t 0 –4 1.0 0.0 –1.0 4 Wavelets in a Nutshell Three Wavelet Examples Extend Fourier Varied functional forms Wavelet basis expansion Nonstationary signals "let": small wave (pack) Fairly recent Each: finite & ∆ T Extensive applications Each: center different t E.g.: all oscillate 4 / 1

  5. Y ω t –4 0 4 y Wave Packets = � Waves Wave Packet e.g. N Cycle Sine 0 10 Packet ⇒ y ( t ) = pulse ∆ t ⇒ Y ( ω ) = pulse ∆ ω  | t | < N T sin ω 0 t , for 2 ,  y ( t ) = | t | > N T 0 , for 2 ,  ⇒ ∆ t = NT = N 2 π ∆ ω ≃ ω 0 , N ω 0 5 / 1

  6. t –4 0 4 y Y ω Uncertainty Principle (Theory) Fundamental Relation: ∆ t ↔ ∆ ω 0 10 N cycle example ⇒ general truth ∆ ω ≃ first 0’s of Y ( ω ) : ω − ω 0 = ± 1 ∆ ω ≃ ω − ω 0 = ω 0 ⇒ N N ω 0 N cycle ⇒ ∆ t ≃ NT = N 2 π ω 0 ⇒ ∆ t ∆ ω ≥ 2 π QM: "Heisenberg Uncertainty Principle" 6 / 1

  7. Wave Packet Assessment (before break) Example Given three wave packets: y 1 ( t ) = e − t 2 / 2 , y 2 ( t ) = sin ( 8 t ) e − t 2 / 2 , y 3 ( t ) = ( 1 − t 2 ) e − t 2 / 2 For each wave packet: Estimate the width ∆ t . A good measure might be the full 1 width at half-maxima (FWHM) of | y ( t ) | . Evaluate and plot the Fourier transform Y ( ω ) . 2 Estimate the width ∆ ω of the transform. A good measure 3 might be the full width at half-maxima of | Y ( ω ) | . Determine the constant C for the uncertainty principle 4 ∆ t ∆ ω ≥ 2 π C . 7 / 1

  8. Continuous Wavelet Transforms Part II (Discrete to Follow) Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from the National Science Foundation Course: Computational Physics II 8 / 1

  9. Time 9 0 1 2 3 4 5 6 7 8 Aside: Wavelet Precursor Sets Stage Colored Boxes → Windows w ( t ) Seen: sin n ω t ∃ all t ’s ⇒ FT short time interval Overlap ⇒ correlated Boxes = windows = w ( t ) Dependent components ⇒ Y τ 1 ( ω ) , Y τ 2 ( ω ) , . . . Y τ N ( ω ) � + ∞ dt e i ω t w ( t − τ ) y ( t ) Y ( ST ) ( ω, τ ) = −∞ 9 / 1

  10. –4 4 0 –2 6 –6 1.0 0.5 0.0 –0.5 –1.0 ψ t 0 4 –4 1.0 0.0 4 t 0 –4 1.0 0.0 –1.0 t 2 The Wavelet Transform Y ( ω ) : exp ( i ω t ) → Y ( s , τ ) : ψ s ,τ ( t ) � + ∞ Y ( s , τ ) = dt ψ ∗ s ,τ ( t ) y ( t ) (wavelet transform) −∞ ∼ Short-time FT τ : time interval analyzed Wavelet localized in t s = scale = 2 π/ω ⇒ Own window t details ⇒ small s Oscillations ⇒ ∆ ω Small scale ⇒ high ω Y = amt ψ s ,τ ( t ) in y ( t ) 10 / 1

  11. –6 –2 –2 0 2 4 6 t 0 –4 0 –6 2 4 6 t s฀=฀2,฀ τ ฀=฀0 –1.0 0.0 1.0 –4 s฀=฀1,฀ τ ฀=฀0 –2 –0.5 s฀=฀1,฀ τ฀ =฀6 t 10 8 6 4 2 –1.0 0.0 6 0.5 1.0 –6 –4 –2 0 2 4 –4 Generating Wavelet Basis Functions � t − τ 1 � Scale by s , Translate by τ : ψ s ,τ ( t ) = √ s Ψ s Ψ = mother of ψ Fixed # oscills; vary T , 0 Need fewer large s s <, > 1 → high, low ω Small s : details Large s : smooth envelope Need for hi resolution 11 / 1

  12. Visualization: Transform of Chirp sin ( 60 t 2 ) � t − τ � + ∞ � 1 Y ( s , τ ) = √ s dt Ψ ∗ y ( t ) (Transform) s −∞ � + ∞ � + ∞ 1 ds s 3 / 2 ψ ∗ y ( t ) = d τ s ,τ ( t ) Y ( s , τ ) (Inverse) C 0 −∞ Convolute low scale Cover all ⇒ High res Expand ⇒ Shape 12 / 1

  13. s 2 20 0 –20 12 8 4 0 Y 1 0 12 0 y(t) 1 Inverted฀Transform 0 ฀t Time 9 8 7 6 5 4 3 2 1 0 Input Solution to Problem Recall Nonstationary Signal 13 / 1

  14. Required of Mother Wavelet Ψ For Math to Work Ψ( t ) is real 1 Ψ( t ) oscillates around 0 such that the average 2 � + ∞ Ψ( t ) dt = 0 −∞ Ψ( t ) is local (wave packet) & square integrable 3 � + ∞ | Ψ( t ) | 2 dt < ∞ −∞ The first p moments vanish (for details): 4 � + ∞ � + ∞ � + ∞ t 0 Ψ( t ) dt = t 1 Ψ( t ) dt = · · · = t p − 1 Ψ( t ) dt = 0 −∞ −∞ −∞ 14 / 1

  15. Implementation: Visualizing Wavelet Transforms Example Convert your DFT program to a CWT one. 1 Examine different mother wavelets. Write methods for 2 a Morlet wavelet 1 a Mexican hat wavelet 2 a Haar wavelet 3 Test your transform on input: 3 y ( t ) = sin 2 π t , 1 y ( t ) = 2 . 5 sin 2 π t + 6 sin 4 π t + 10 sin 6 π t , 2 The nonstationary signal for our problem: 3  sin 2 π t , for 0 ≤ t ≤ 2 ,    y ( t ) = 5 sin 2 π t + 10 sin 4 π t , for 2 ≤ t ≤ 8 ,   2 . 5 sin 2 π t + 6 sin 4 π t + 10 sin 6 π t , for 8 ≤ t ≤ 12 .  Invert your CWT & compare to input. 4 15 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend