continuous time markov chains construction and basic tools
play

Continuous time Markov Chains: construction and basic tools Conrado - PowerPoint PPT Presentation

Continuous time Markov Chains: construction and basic tools Conrado da Costa Department of Mathematical Sciences (Durham University) email: conrado.da-costa@durham.ac.uk September, 2020 1 / 21 Outline Construction Finite Infinite


  1. Infinite state spaces Challenges of infinite state spaces: sup x r ( x ) = ∞ . Explosion, Implosions Solutions: Construction up to explosion, Construction via limits. 7 / 21

  2. Infinite state spaces Challenges of infinite state spaces: sup x r ( x ) = ∞ . Explosion, Implosions Solutions: Construction up to explosion, Construction via limits. This is the case of Interacting Particle Systems (IPS) 7 / 21

  3. Interacting Particle Systems S = X V , η ∈ S , x , y ∈ V 8 / 21

  4. Interacting Particle Systems S = X V , η ∈ S , x , y ∈ V Simple cases { 0 , 1 } N - not infinite, but very big and sparse. 8 / 21

  5. Interacting Particle Systems S = X V , η ∈ S , x , y ∈ V Simple cases { 0 , 1 } N - not infinite, but very big and sparse. Local interaction. Local transformation maps: Γ m : S → S , m ∈ M . 8 / 21

  6. Interacting Particle Systems S = X V , η ∈ S , x , y ∈ V Simple cases { 0 , 1 } N - not infinite, but very big and sparse. Local interaction. Local transformation maps: Γ m : S → S , m ∈ M . rates { r ( η, m ) , m ∈ S } . 8 / 21

  7. Interacting Particle Systems S = X V , η ∈ S , x , y ∈ V Simple cases { 0 , 1 } N - not infinite, but very big and sparse. Local interaction. Local transformation maps: Γ m : S → S , m ∈ M . rates { r ( η, m ) , m ∈ S } . Formal generators � Lf ( η ) = r ( η, m )[ f (Γ m η ) − f ( η )] m 8 / 21

  8. Interacting Particle Systems S = X V , η ∈ S , x , y ∈ V Simple cases { 0 , 1 } N - not infinite, but very big and sparse. Local interaction. Local transformation maps: Γ m : S → S , m ∈ M . rates { r ( η, m ) , m ∈ S } . Formal generators � Lf ( η ) = r ( η, m )[ f (Γ m η ) − f ( η )] m V = Z : 8 / 21

  9. Interacting Particle Systems S = X V , η ∈ S , x , y ∈ V Simple cases { 0 , 1 } N - not infinite, but very big and sparse. Local interaction. Local transformation maps: Γ m : S → S , m ∈ M . rates { r ( η, m ) , m ∈ S } . Formal generators � Lf ( η ) = r ( η, m )[ f (Γ m η ) − f ( η )] m V = Z : uncountable state space 8 / 21

  10. Overview What is the object of interest here? 9 / 21

  11. Overview What is the object of interest here? � d = L ∗ µ t dt µ t = δ x µ 0 9 / 21

  12. Overview What is the object of interest here? � d = L ∗ µ t dt µ t = δ x µ 0 Goal: To understand the behavior of µ t in the relevant scales. 9 / 21

  13. Questions The type of questions we look: 10 / 21

  14. Questions The type of questions we look: ◮ evolution of S t ( f ) for test functions f . 10 / 21

  15. Questions The type of questions we look: ◮ evolution of S t ( f ) for test functions f . ◮ invariant measures 10 / 21

  16. Questions The type of questions we look: ◮ evolution of S t ( f ) for test functions f . ◮ invariant measures ◮ convergence 10 / 21

  17. Questions The type of questions we look: ◮ evolution of S t ( f ) for test functions f . ◮ invariant measures ◮ convergence ◮ effects of space-time rescaling for S n · 10 / 21

  18. Questions The type of questions we look: ◮ evolution of S t ( f ) for test functions f . ◮ invariant measures ◮ convergence ◮ effects of space-time rescaling for S n · ◮ An attempt of explaining physical phenomena: 10 / 21

  19. Questions The type of questions we look: ◮ evolution of S t ( f ) for test functions f . ◮ invariant measures ◮ convergence ◮ effects of space-time rescaling for S n · ◮ An attempt of explaining physical phenomena: ◮ fluid equation 10 / 21

  20. Questions The type of questions we look: ◮ evolution of S t ( f ) for test functions f . ◮ invariant measures ◮ convergence ◮ effects of space-time rescaling for S n · ◮ An attempt of explaining physical phenomena: ◮ fluid equation ◮ state of matter 10 / 21

  21. Questions The type of questions we look: ◮ evolution of S t ( f ) for test functions f . ◮ invariant measures ◮ convergence ◮ effects of space-time rescaling for S n · ◮ An attempt of explaining physical phenomena: ◮ fluid equation ◮ state of matter ◮ phase transition 10 / 21

  22. Tools 11 / 21

  23. Tools ◮ Kolmogorov equations 11 / 21

  24. Tools ◮ Kolmogorov equations ◮ Dynkin Martingales 11 / 21

  25. Tools ◮ Kolmogorov equations ◮ Dynkin Martingales ◮ Tightness criteria 11 / 21

  26. Tools ◮ Kolmogorov equations ◮ Dynkin Martingales ◮ Tightness criteria ◮ Martingale problems 11 / 21

  27. Tools ◮ Kolmogorov equations ◮ Dynkin Martingales ◮ Tightness criteria ◮ Martingale problems ◮ Limits of IPS 11 / 21

  28. Forward Kolmogorov equations 12 / 21

  29. Forward Kolmogorov equations � ∂ t P ( s , x ; t , • ) = L ∗ P ( s , x ; t , • ) lim t ↓ s P ( s , x ; t , • ) = δ x ( • ) 12 / 21

  30. Forward Kolmogorov equations � ∂ t P ( s , x ; t , • ) = L ∗ P ( s , x ; t , • ) lim t ↓ s P ( s , x ; t , • ) = δ x ( • ) � Let v ( t , x ) := E [ ϕ ( X t ) | X s = x ] = P ( s , x ; t , dy ) ϕ ( y ) 12 / 21

  31. Forward Kolmogorov equations � ∂ t P ( s , x ; t , • ) = L ∗ P ( s , x ; t , • ) lim t ↓ s P ( s , x ; t , • ) = δ x ( • ) � Let v ( t , x ) := E [ ϕ ( X t ) | X s = x ] = P ( s , x ; t , dy ) ϕ ( y ) � ∂ t v ( t , x ) = ∂ t P ( s , x ; t , dy ) ϕ ( y ) 12 / 21

  32. Forward Kolmogorov equations � ∂ t P ( s , x ; t , • ) = L ∗ P ( s , x ; t , • ) lim t ↓ s P ( s , x ; t , • ) = δ x ( • ) � Let v ( t , x ) := E [ ϕ ( X t ) | X s = x ] = P ( s , x ; t , dy ) ϕ ( y ) � ∂ t v ( t , x ) = ∂ t P ( s , x ; t , dy ) ϕ ( y ) � � P ( s , x ; t , dy ) h − 1 ∂ t v ( t , x ) = lim P ( t , y ; t + h , dz )( ϕ ( z ) − ϕ ( y )) h 12 / 21

  33. Forward Kolmogorov equations � ∂ t P ( s , x ; t , • ) = L ∗ P ( s , x ; t , • ) lim t ↓ s P ( s , x ; t , • ) = δ x ( • ) � Let v ( t , x ) := E [ ϕ ( X t ) | X s = x ] = P ( s , x ; t , dy ) ϕ ( y ) � ∂ t v ( t , x ) = ∂ t P ( s , x ; t , dy ) ϕ ( y ) � � P ( s , x ; t , dy ) h − 1 ∂ t v ( t , x ) = lim P ( t , y ; t + h , dz )( ϕ ( z ) − ϕ ( y )) h � = P ( s , x ; t , dy ) L ϕ ( y ) 12 / 21

  34. Forward Kolmogorov equations � ∂ t P ( s , x ; t , • ) = L ∗ P ( s , x ; t , • ) lim t ↓ s P ( s , x ; t , • ) = δ x ( • ) � Let v ( t , x ) := E [ ϕ ( X t ) | X s = x ] = P ( s , x ; t , dy ) ϕ ( y ) � ∂ t v ( t , x ) = ∂ t P ( s , x ; t , dy ) ϕ ( y ) � � P ( s , x ; t , dy ) h − 1 ∂ t v ( t , x ) = lim P ( t , y ; t + h , dz )( ϕ ( z ) − ϕ ( y )) h � � = P ( s , x ; t , dy ) L ϕ ( y ) = L ∗ P ( s , x ; t , dy ) ϕ ( y ) 12 / 21

  35. Backward Kolmogorov equations � − ∂ s P ( s , x ; t , • ) = LP ( s , x ; t , • ) lim s ↑ t P ( s , x ; t , • ) = δ x ( • ) 13 / 21

  36. Backward Kolmogorov equations � − ∂ s P ( s , x ; t , • ) = LP ( s , x ; t , • ) lim s ↑ t P ( s , x ; t , • ) = δ x ( • ) � Let w ( s , x ) := E [ ϕ ( X t ) | X s = x ] = P ( s , x ; t , dy ) ϕ ( y ) 13 / 21

  37. Backward Kolmogorov equations � − ∂ s P ( s , x ; t , • ) = LP ( s , x ; t , • ) lim s ↑ t P ( s , x ; t , • ) = δ x ( • ) � Let w ( s , x ) := E [ ϕ ( X t ) | X s = x ] = P ( s , x ; t , dy ) ϕ ( y ) � ∂ s w ( s , x ) = − ∂ s P ( s , x ; t , dy ) ϕ ( y ) 13 / 21

  38. Backward Kolmogorov equations � − ∂ s P ( s , x ; t , • ) = LP ( s , x ; t , • ) lim s ↑ t P ( s , x ; t , • ) = δ x ( • ) � Let w ( s , x ) := E [ ϕ ( X t ) | X s = x ] = P ( s , x ; t , dy ) ϕ ( y ) � ∂ s w ( s , x ) = − ∂ s P ( s , x ; t , dy ) ϕ ( y ) � h h − 1 − ∂ s w ( s , x ) = lim P ( s − h , x ; s , dy )[ w ( s , y ) − w ( s , x )] 13 / 21

  39. Backward Kolmogorov equations � − ∂ s P ( s , x ; t , • ) = LP ( s , x ; t , • ) lim s ↑ t P ( s , x ; t , • ) = δ x ( • ) � Let w ( s , x ) := E [ ϕ ( X t ) | X s = x ] = P ( s , x ; t , dy ) ϕ ( y ) � ∂ s w ( s , x ) = − ∂ s P ( s , x ; t , dy ) ϕ ( y ) � h h − 1 − ∂ s w ( s , x ) = lim P ( s − h , x ; s , dy )[ w ( s , y ) − w ( s , x )] h h − 1 [ Lw ( s − h , x ) h + o ( h )] = lim 13 / 21

  40. Backward Kolmogorov equations � − ∂ s P ( s , x ; t , • ) = LP ( s , x ; t , • ) lim s ↑ t P ( s , x ; t , • ) = δ x ( • ) � Let w ( s , x ) := E [ ϕ ( X t ) | X s = x ] = P ( s , x ; t , dy ) ϕ ( y ) � ∂ s w ( s , x ) = − ∂ s P ( s , x ; t , dy ) ϕ ( y ) � h h − 1 − ∂ s w ( s , x ) = lim P ( s − h , x ; s , dy )[ w ( s , y ) − w ( s , x )] h h − 1 [ Lw ( s − h , x ) h + o ( h )] = Lw ( s , x ) = lim 13 / 21

  41. Dynkin Martingales If � < C � � ∂ j � F : R + × S → R sup s F ( s , x ) ( s , x ) 14 / 21

  42. Dynkin Martingales If � < C � � ∂ j � F : R + × S → R sup s F ( s , x ) ( s , x ) then � t � M F ( t ) := F ( t , X t ) − F (0 , X 0 ) − 0 ( ∂ s + L ) F ( s , X s ) ds � t N F ( t ) := [ M F ( t )] 2 − 0 ( QF )( s , X s ) ds are martingales, 14 / 21

  43. Dynkin Martingales If � < C � � ∂ j � F : R + × S → R sup s F ( s , x ) ( s , x ) then � t � M F ( t ) := F ( t , X t ) − F (0 , X 0 ) − 0 ( ∂ s + L ) F ( s , X s ) ds � t N F ( t ) := [ M F ( t )] 2 − 0 ( QF )( s , X s ) ds are martingales, where QF ( s , x ) := LF 2 ( s , x ) − 2 F ( s , x ) LF ( s , x ) 14 / 21

  44. Dynkin Martingales If � < C � � ∂ j � F : R + × S → R sup s F ( s , x ) ( s , x ) then � t � M F ( t ) := F ( t , X t ) − F (0 , X 0 ) − 0 ( ∂ s + L ) F ( s , X s ) ds � t N F ( t ) := [ M F ( t )] 2 − 0 ( QF )( s , X s ) ds are martingales, where QF ( s , x ) := LF 2 ( s , x ) − 2 F ( s , x ) LF ( s , x ) = � r xy [ F ( s , y ) − F ( s , x )] 2 y 14 / 21

  45. Proof (Dynkin) � t M F ( t ) − M F ( s ) = F ( t , X t ) − F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr s 15 / 21

  46. Proof (Dynkin) � t M F ( t ) − M F ( s ) = F ( t , X t ) − F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr s E [ M F ( t ) − M F ( s ) |F s ] = 0 15 / 21

  47. Proof (Dynkin) � t M F ( t ) − M F ( s ) = F ( t , X t ) − F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr s E [ M F ( t ) − M F ( s ) |F s ] = 0 ϕ ( r ) := E [ M F ( r ) − M F ( s ) |F s ] ϕ ′ ( r ) = 0 ϕ ( s ) = 0 15 / 21

  48. Proof (Dynkin) � t M F ( t ) − M F ( s ) = F ( t , X t ) − F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr s E [ M F ( t ) − M F ( s ) |F s ] = 0 ϕ ( r ) := E [ M F ( r ) − M F ( s ) |F s ] ϕ ′ ( r ) = 0 ϕ ( s ) = 0 � r + h h − 1 E [ ( ∂ u + L ) F ( u , X u ) du |F s ] → E [( ∂ r + L ) F ( r , X r ) |F s ] r 15 / 21

  49. Proof (Dynkin) � t M F ( t ) − M F ( s ) = F ( t , X t ) − F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr s E [ M F ( t ) − M F ( s ) |F s ] = 0 ϕ ( r ) := E [ M F ( r ) − M F ( s ) |F s ] ϕ ′ ( r ) = 0 ϕ ( s ) = 0 � r + h h − 1 E [ ( ∂ u + L ) F ( u , X u ) du |F s ] → E [( ∂ r + L ) F ( r , X r ) |F s ] r h − 1 E [ F ( r + h , X r + h ) − F ( r , X r ) |F s ] = 15 / 21

  50. Proof (Dynkin) � t M F ( t ) − M F ( s ) = F ( t , X t ) − F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr s E [ M F ( t ) − M F ( s ) |F s ] = 0 ϕ ( r ) := E [ M F ( r ) − M F ( s ) |F s ] ϕ ′ ( r ) = 0 ϕ ( s ) = 0 � r + h h − 1 E [ ( ∂ u + L ) F ( u , X u ) du |F s ] → E [( ∂ r + L ) F ( r , X r ) |F s ] r h − 1 E [ F ( r + h , X r + h ) − F ( r , X r ) |F s ] = h − 1 E [ F ( r + h , X r + h ) − F ( r , X r ) |F s ] + h − 1 E [ F ( r , X r + h ) − F ( r , X r ) |F s ] 15 / 21

  51. Proof (Dynkin) � t M F ( t ) − M F ( s ) = F ( t , X t ) − F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr s E [ M F ( t ) − M F ( s ) |F s ] = 0 ϕ ( r ) := E [ M F ( r ) − M F ( s ) |F s ] ϕ ′ ( r ) = 0 ϕ ( s ) = 0 � r + h h − 1 E [ ( ∂ u + L ) F ( u , X u ) du |F s ] → E [( ∂ r + L ) F ( r , X r ) |F s ] r h − 1 E [ F ( r + h , X r + h ) − F ( r , X r ) |F s ] = h − 1 E [ F ( r + h , X r + h ) − F ( r , X r ) |F s ] + h − 1 E [ F ( r , X r + h ) − F ( r , X r ) |F s ] → E [ ∂ r F ( r , X r ) |F s ] + E [ LF ( r , X r ) |F s ] 15 / 21

  52. Proof (Dynkin) � t � t N F ( t ) := [ M F ( t )] 2 − M F ( t ) = F ( t , X t ) − F (0 , X 0 ) − ( QF )( s , X s ) ds ( ∂ s + L ) F ( s , X s ) ds 0 0 16 / 21

  53. Proof (Dynkin) � t � t N F ( t ) := [ M F ( t )] 2 − M F ( t ) = F ( t , X t ) − F (0 , X 0 ) − ( QF )( s , X s ) ds ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t 0 ( t ) := M F ( t ) + F (0 , X 0 ) = F ( t , X t ) − F 2 ( t , X t ) ∼ ( ∂ s + L ) F 2 ( s , X s ) ds M F ( ∂ s + L ) F ( s , X s ) ds 0 0 16 / 21

  54. Proof (Dynkin) � t � t N F ( t ) := [ M F ( t )] 2 − M F ( t ) = F ( t , X t ) − F (0 , X 0 ) − ( QF )( s , X s ) ds ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t 0 ( t ) := M F ( t ) + F (0 , X 0 ) = F ( t , X t ) − F 2 ( t , X t ) ∼ ( ∂ s + L ) F 2 ( s , X s ) ds M F ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t Integration by parts: G t M t = 0 G s dM s + 0 M s dG s 16 / 21

  55. Proof (Dynkin) � t � t N F ( t ) := [ M F ( t )] 2 − M F ( t ) = F ( t , X t ) − F (0 , X 0 ) − ( QF )( s , X s ) ds ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t 0 ( t ) := M F ( t ) + F (0 , X 0 ) = F ( t , X t ) − F 2 ( t , X t ) ∼ ( ∂ s + L ) F 2 ( s , X s ) ds M F ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t Integration by parts: G t M t = 0 G s dM s + 0 M s dG s � t � t � s M F � � 0 ( t ) ( ∂ s + L ) F ( s , X s ) ds ∼ F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr ( ∂ s + L ) F ( s , X s ) ds 0 0 0 16 / 21

  56. Proof (Dynkin) � t � t N F ( t ) := [ M F ( t )] 2 − M F ( t ) = F ( t , X t ) − F (0 , X 0 ) − ( QF )( s , X s ) ds ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t 0 ( t ) := M F ( t ) + F (0 , X 0 ) = F ( t , X t ) − F 2 ( t , X t ) ∼ ( ∂ s + L ) F 2 ( s , X s ) ds M F ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t Integration by parts: G t M t = 0 G s dM s + 0 M s dG s � t � t � s M F � � 0 ( t ) ( ∂ s + L ) F ( s , X s ) ds ∼ F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr ( ∂ s + L ) F ( s , X s ) ds 0 0 0 � t �� t � 2 [ M F ( t )] 2 = F 2 ( t , X t ) − 2 F ( t , X t ) ( ∂ s + L ) F ( s , X s ) ds + ( ∂ s + L ) F ( s , X s ) ds 0 0 16 / 21

  57. Proof (Dynkin) � t � t N F ( t ) := [ M F ( t )] 2 − M F ( t ) = F ( t , X t ) − F (0 , X 0 ) − ( QF )( s , X s ) ds ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t 0 ( t ) := M F ( t ) + F (0 , X 0 ) = F ( t , X t ) − F 2 ( t , X t ) ∼ ( ∂ s + L ) F 2 ( s , X s ) ds M F ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t Integration by parts: G t M t = 0 G s dM s + 0 M s dG s � t � t � s M F � � 0 ( t ) ( ∂ s + L ) F ( s , X s ) ds ∼ F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr ( ∂ s + L ) F ( s , X s ) ds 0 0 0 � t �� t � 2 [ M F ( t )] 2 = F 2 ( t , X t ) − 2 F ( t , X t ) ( ∂ s + L ) F ( s , X s ) ds + ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t �� t � 2 ( ∂ s + L ) F 2 ( s , X s ) ds − 2 M F ∼ 0 ( t ) ( ∂ s + L ) F ( s , X s ) ds − ( ∂ s + L ) F ( s , X s ) ds 0 0 0 16 / 21

  58. Proof (Dynkin) � t � t N F ( t ) := [ M F ( t )] 2 − M F ( t ) = F ( t , X t ) − F (0 , X 0 ) − ( QF )( s , X s ) ds ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t 0 ( t ) := M F ( t ) + F (0 , X 0 ) = F ( t , X t ) − F 2 ( t , X t ) ∼ ( ∂ s + L ) F 2 ( s , X s ) ds M F ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t Integration by parts: G t M t = 0 G s dM s + 0 M s dG s � t � t � s M F � � 0 ( t ) ( ∂ s + L ) F ( s , X s ) ds ∼ F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr ( ∂ s + L ) F ( s , X s ) ds 0 0 0 � t �� t � 2 [ M F ( t )] 2 = F 2 ( t , X t ) − 2 F ( t , X t ) ( ∂ s + L ) F ( s , X s ) ds + ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t �� t � 2 ( ∂ s + L ) F 2 ( s , X s ) ds − 2 M F ∼ 0 ( t ) ( ∂ s + L ) F ( s , X s ) ds − ( ∂ s + L ) F ( s , X s ) ds 0 0 0 � t � t ( ∂ s + L ) F 2 ( s , X s ) ds − 2 F ( s , X s )( ∂ s + L ) F ( s , X s ) ds ∼ 0 0 � t � s �� t � 2 + 2 ( ∂ r + L ) F ( r , X r ) dr ( ∂ s + L ) F ( s , X s ) ds − ( ∂ s + L ) F ( s , X s ) ds 0 0 0 16 / 21

  59. Proof (Dynkin) � t � t N F ( t ) := [ M F ( t )] 2 − M F ( t ) = F ( t , X t ) − F (0 , X 0 ) − ( QF )( s , X s ) ds ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t 0 ( t ) := M F ( t ) + F (0 , X 0 ) = F ( t , X t ) − F 2 ( t , X t ) ∼ ( ∂ s + L ) F 2 ( s , X s ) ds M F ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t Integration by parts: G t M t = 0 G s dM s + 0 M s dG s � t � t � s M F � � 0 ( t ) ( ∂ s + L ) F ( s , X s ) ds ∼ F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr ( ∂ s + L ) F ( s , X s ) ds 0 0 0 � t �� t � 2 [ M F ( t )] 2 = F 2 ( t , X t ) − 2 F ( t , X t ) ( ∂ s + L ) F ( s , X s ) ds + ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t �� t � 2 ( ∂ s + L ) F 2 ( s , X s ) ds − 2 M F ∼ 0 ( t ) ( ∂ s + L ) F ( s , X s ) ds − ( ∂ s + L ) F ( s , X s ) ds 0 0 0 � t � t ( ∂ s + L ) F 2 ( s , X s ) ds − 2 F ( s , X s )( ∂ s + L ) F ( s , X s ) ds ∼ 0 0 16 / 21

  60. Proof (Dynkin) � t � t N F ( t ) := [ M F ( t )] 2 − M F ( t ) = F ( t , X t ) − F (0 , X 0 ) − ( QF )( s , X s ) ds ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t 0 ( t ) := M F ( t ) + F (0 , X 0 ) = F ( t , X t ) − F 2 ( t , X t ) ∼ ( ∂ s + L ) F 2 ( s , X s ) ds M F ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t Integration by parts: G t M t = 0 G s dM s + 0 M s dG s � t � t � s M F � � 0 ( t ) ( ∂ s + L ) F ( s , X s ) ds ∼ F ( s , X s ) − ( ∂ r + L ) F ( r , X r ) dr ( ∂ s + L ) F ( s , X s ) ds 0 0 0 � t �� t � 2 [ M F ( t )] 2 = F 2 ( t , X t ) − 2 F ( t , X t ) ( ∂ s + L ) F ( s , X s ) ds + ( ∂ s + L ) F ( s , X s ) ds 0 0 � t � t �� t � 2 ( ∂ s + L ) F 2 ( s , X s ) ds − 2 M F ∼ 0 ( t ) ( ∂ s + L ) F ( s , X s ) ds − ( ∂ s + L ) F ( s , X s ) ds 0 0 0 � t � t � t ( ∂ s + L ) F 2 ( s , X s ) ds − 2 F ( s , X s )( ∂ s + L ) F ( s , X s ) ds ∼ ( QF )( s , X s ) ds ∼ 0 0 0 16 / 21

  61. Tightness criterion Family of processes ( X N · , N ∈ N ) 17 / 21

  62. Tightness criterion Family of processes ( X N · , N ∈ N ) is tight if N P ( X N ∈ K ( ε )) > 1 − ε. ∀ ε > 0 , ∃K ( ε ); inf 17 / 21

  63. Tightness criterion Family of processes ( X N · , N ∈ N ) is tight if N P ( X N ∈ K ( ε )) > 1 − ε. ∀ ε > 0 , ∃K ( ε ); inf Aldous’s criterion. 17 / 21

  64. Tightness criterion Family of processes ( X N · , N ∈ N ) is tight if N P ( X N ∈ K ( ε )) > 1 − ε. ∀ ε > 0 , ∃K ( ε ); inf Aldous’s criterion. Probabilistic version of Arzel´ a-Ascoli: 17 / 21

  65. Tightness criterion Family of processes ( X N · , N ∈ N ) is tight if N P ( X N ∈ K ( ε )) > 1 − ε. ∀ ε > 0 , ∃K ( ε ); inf Aldous’s criterion. Probabilistic version of Arzel´ a-Ascoli: P [ X N 1) sup ∈ K ( t , ǫ )] ≤ ǫ / t N P [ X N : ω ′ ( X N , γ ) > ǫ ] = 0 2) γ → 0 lim sup lim N 17 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend