continuity properties of local martingales within orlicz
play

Continuity properties of local martingales within Orlicz spaces - PDF document

Continuity properties of local martingales within Orlicz spaces Daniele Imparato Politecnico of Turin daniele.imparato@polito.it September 16, 2005 Introduction to Orlicz spaces Let ( , F , ) be a probability space; consider the Lebesgue


  1. Continuity properties of local martingales within Orlicz spaces Daniele Imparato Politecnico of Turin daniele.imparato@polito.it September 16, 2005

  2. Introduction to Orlicz spaces Let (Ω , F , µ ) be a probability space; consider the Lebesgue space L p ( µ ), with 1 ≤ p < ∞ ; then � f ∈ L p ( µ ) ⇔ Ω Φ( f ) dµ < + ∞ , where Φ( x ) := | x | p . 1. Φ( x ) is an increasing convex function 2. Φ(0) = 0 3. x → + ∞ Φ( x ) = + ∞ lim Definition . Any function Ψ satisfying 1 ., 2 ., 3 . is called a Young function . 1

  3. Let us consider the Orlicz class associated to the Young function Φ � L Φ ( µ ) := { u r.v. : ˜ Ω Φ( | u | ) dµ < ∞} L Φ ( µ ) is a convex space • ˜ • it is not a vector space in general! We introduce the Orlicz space L Φ ( µ ) := { u r. v. : ∃ α > 0 s.t. E µ [Φ( αu )] < ∞} . • L Φ ( µ ) is a vector space • it is indeed a Banach space by endowing it with the norm � u � � �� � || u || (Φ ,µ ) := inf k > 0 : E µ Φ ≤ 1 . k 2

  4. The space L cosh − 1 ( p · µ ) • Let Φ 1 ( x ) := cosh( x ) − 1 • Let M (Ω , F , µ ) be the set of the µ -almost surely strictly positive densities. ∀ p ∈ M (Ω , F , µ ), consider L Φ 1 ( p · µ ). Definition . Let p ∈ M (Ω , F , µ ) be given; we define the Cram´ er Class at p as the set of r.v. u on (Ω , F , µ ) such that there exists ε > 0 for which � e tu � < ∞ , E p · µ for every t ∈ ( − ε, ε ) . Proposition . The Cram´ er class at p coincides with the space L Φ 1 ( p · µ ) -Pistone and Sempi (1995) - 3

  5. Change of measures Let u ∈ L Φ 1 ( r · µ ); consider the one-dimensional exponential model p ( t ) := e tu − ψ ( t ) r t ∈ ( − ε, ε ) , ε > 0 , (1) � e tu � Ψ( t ) := log E r is the cumulant function. Proposition . Let p, q ∈ M (Ω , F , µ ) connected by the above exponential model; then the cor- respondent Orlicz spaces are isomorphic, i.e. L Φ 1 ( p · µ ) ≃ L Φ 1 ( q · µ ) -see Pistone and Sempi (1995), Pistone and Rogantin (1999) and Cena (2003)- 4

  6. The space L n, Φ 1 ( p · µ ) In analogy with Lebesgue spaces L p , we define u n ∈ L Φ 1 ( p · µ ) } L n, Φ 1 ( p · µ ) := { u r. v. : • L n, Φ 1 ( p · µ ) is indeed an Orlicz space with respect to the Young function Φ n 1 ( x ) := cosh( x n ) − 1 . 1 1 ,p · µ ) = || u n || n • || u || (Φ n (Φ 1 ,p · µ ) . • L Φ n +1 ( p · µ ) ⊂ L Φ n 1 ( p · µ ) ∀ n ≥ 1 . 1 Proposition . The product uv L 2 , Φ 1 ( p · µ ) × L 2 , Φ 1 ( p · µ ) ∋ ( u, v ) �→ uv ∈ L Φ 1 ( p · µ ) is a continuous bilinear form. 5

  7. Application to martingales theory • (Ω , F , µ, ( F t ) t ∈ [0 ,T ] ) filtered probability space satisfying usual conditions • M ∈ M C loc loc. martingale with c.t. Classical inequalities within L Φ ( µ ) (see Dellacherie - Meyer, (1975) ) � t Let Φ( t ) = 0 φ ( s ) ds and tφ ( t ) α (Φ) := sup Φ( t ) < ∞ . t> 0 • Let Z ∈ L Φ ( µ ). If A t is an increasing pro- cess s.t. Y t := E [ A ∞ − A t |F t ] ≤ E [ Z |F t ] , 6

  8. then || A ∞ || (Φ ,µ ) ≤ α (Φ) || Y ∞ || (Φ ,µ ) . • Let X t be a mart s.t. sup || X t || (Φ ,µ ) < ∞ ; t then X t converges in L Φ ( µ ). Furthermore, if Ψ denotes the conjugate Young function of Φ and α (Ψ) < ∞ , then || sup X t || (Φ ,µ ) ≤ c || X ∞ || (Φ ,µ ) . t New inequalities within L Φ 1 ( µ ) Proposition . Let τ be a bounded stopping time and suppose � M � τ ∈ L Φ 1 ( µ ) ; √ || M τ || 2 (Φ 1 ,µ ) ≤ 2 ||� M � τ || (Φ 1 ,µ ) . (2) Lemma . Let τ be a bounded stopping time. If M τ ∈ L Φ 1 ( µ ) , there exists a strictly positive constant c such that ||� M � τ || (Φ 1 ,q α · µ ) ≤ c || M τ || 2 (3) (Φ 1 ,µ ) , where q α := E ( αM τ ) and α = α ( || M τ || (Φ 1 ,µ ) ) . 7

  9. It is possible to show that measures q α · µ and µ can be connected by an exponential model. Proposition . Under the same hypothesis, there exists a strictly positive constant C such that ||� M � τ || (Φ 1 ,µ ) ≤ C || M τ || 2 (4) (Φ 1 ,µ ) . Corollary . M τ ∈ L Φ 1 ( µ ) ⇔ � M � τ ∈ L Φ 1 ( µ ) . 8

  10. Continuity properties By using the previous results, the following statement follows. Theorem . Let M t , N t ∈ L Φ 1 ( µ ) and τ be a bounded stopping time. Then there exists a constant k > 0 such that ||� M, N � τ || (Φ 1 ,µ ) ≤ k || M τ || (Φ 1 ,µ ) || N τ || (Φ 1 ,µ ) , i.e. the crochet is a continuous bilinear form within L Φ 1 ( µ ) . 9

  11. Let X be a Banach space; we denote by L p ( X, F ), 1 ≤ p < ∞ , the Banach space endowed with the following norm: for f : Ω → X , � p �� || f || p || f || ( p,X ) := X dF . Proposition . Let M be a cont. mart such that � M � t = F ( t ) ; then the map � • η �→ ( η · M )( • ) := 0 η s ( ω ) dM s ( ω ) is a continuous linear operator from L 2 ( L 2 , Φ 1 ( µ ) , F ) to L Φ 1 ( µ ) . Similar results can be obtained in more general cases: vector measures mathematical frame- work is needed - see Diestel and Uhl (1977). 10

  12. References Pistone, G. and Sempi, C. (1995) An in- finite dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Statist. 23 , 1543 − 1561. Pistone, G. and Rogantin, M.P. (1999) The exponential statistical manifold: mean pa- rameters, orthogonality and space transfor- mations. Bernoulli 5 (4), 721 − 760 Rao, M.M. and Ren, Z.D. (1991) Theory of Orlicz Spaces. New York: Dekker. Cena, A. (2003) Geometric structures on the non-parametric statistical manifold. PhD thesis. Milan: Polytechnic of Milan. 11

  13. Kazamaki, N. (1994) Continuous Exponential Martingales and BMO. Berlino: Springer. Frittelli, M. (2000)The minimal martingale mea- sure and the valuation problem in incom- plete markets. Mathematical Finance 10 , 39 − 52. Bellini, F. and Frittelli, M. (2002) On the existence of minimax martingale measures. Mathematical Finance 12 , 1 − 21. Gao, Y., Lim, K.G. and Ng, K.H. (2004) An approximation pricing algorithm in an in- complete market: A differential geomet- ric approach. Finance and Stochastics 8 , 521 − 523.

  14. Gao, Y.(2002) Differential approach to incom- plete financial market modelling . PhD the- sis. Singapore: National University of Sin- gapore. Amari, S. and Nagaoka, H. (2000) Methods of information geometry. Providence, RI: Ox- ford University Press and American Math- ematical Society. Dellacherie, C. and Meyer, P.A. (1980) Prob- abilit´ e at potentiel - Theorie des martin- gales. Paris: Hermann. Diestel, J. and Uhl, J.J., Jr. (197) Vector measures. Providence, RI: American Math- ematical Society.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend