contents
play

Contents Flavour permutational symmetry A minimal S 3 -invariant - PowerPoint PPT Presentation

The flavour permutational symmetry S 3 A. Mondrag on Instituto de F sica, UNAM Prog. of Theoretical Physics 109 , 795 (2003) Rev. Mex. Fis , S52, N4 , 67-73 (2006) Phys. Rev. D, 76 , 076003, (2007) J. Phys. A: Mathematical and Theoretical


  1. The flavour permutational symmetry S 3 A. Mondrag´ on Instituto de F´ ısica, UNAM Prog. of Theoretical Physics 109 , 795 (2003) Rev. Mex. Fis , S52, N4 , 67-73 (2006) Phys. Rev. D, 76 , 076003, (2007) J. Phys. A: Mathematical and Theoretical 41 , 304035 (2008) Phys. of Atomic Nuclei 74 , 1075-1083 (2011). XIII Mexican Workshop on Particles and Fields 20 - 26 October 2011, Le´ on Guanajuato, M´ exico

  2. Contents • Flavour permutational symmetry • A minimal S 3 -invariant extension of the Standard Model • Masses and mixings in the quark sector • Masses and mixings in the leptonic sector • The neutrino mass spectrum • FCNCs • The anomaly of the moun’s magnetic moment • Summary and conclusions 1

  3. The Group S 3 The group S 3 of permutations of three objects Permutations Rotations 3 � 1 � 2 3 a 120 ◦ − rotation around the ⇐ ⇒ 3 1 2 V 1 invariant vector V 1 V2A � 1 � 2 3 a 180 ◦ rotation around the ⇐ ⇒ 2 2 1 3 invariant vector V 2 s V2s 1 Symmetry adapted basis       1 1 1 1 1 1  , | v 2 s > =  , | v 1 > = | v 2 A > = √ − 1 √ 1 √ 1     2 6 3 0 − 2 1 2

  4. Irreducible representations of S 3 The group S 3 has two one-dimensional irreps (singlets ) and one two-dimensional irrep (doublet) • one dimensional: 1 A antisymmetric singlet, 1 s symmetric singlet • Two - dimensional: 2 doublet Direct product of irreps of S 3 1 s ⊗ 1 s = 1 s , 1 s ⊗ 1 A = 1 A , 1 A ⊗ 1 A = 1 s , 1 s ⊗ 2 = 2 , 1 A ⊗ 2 = 2 2 ⊗ 2 = 1 s ⊕ 1 A ⊕ 2 the direct (tensor) product of two doublets � p D 1 � � q D 1 � p D = and q D = p D 2 q D 2 has two singlets, r s and r A , and one doublet r T D r s = p D 1 q D 1 + p D 2 q D 2 is invariant , r A = p D 1 q D 2 − p D 2 q D 1 is not invariant � p D 1 q D 2 + p D 2 q D 1 � r T D = p D 1 q D 1 − p D 2 q D 2 3

  5. A Minimal S 3 invariant extension of the SM The Higgs sector is modified, (Φ 1 , Φ 2 , Φ 3 ) T Φ → H = H is a reducible 1 s ⊕ 2 rep. of S 3 1 � � H s = √ Φ 1 + Φ 2 + Φ 3 3  1  2 (Φ 1 − Φ 2 ) √ H D =     1 6 (Φ 1 + Φ 2 − 2Φ 3 ) √ Quark, lepton and Higgs fields are Q T = ( u L , d L ) , u R , d R , L † = ( ν L , e L ) , e R , ν R , H All these fields have three species (flavours) and belong to a reducible 1 ⊕ 2 rep. of S 3 4

  6. Leptons’ Yukawa interactions Leptons − Y e 1 L I H S e IR − Y e 3 L 3 H S e 3 R − Y e L YE = 2 [ L I κ IJ H 1 e JR + L I η IJ H 2 e JR ] Y e 4 L 3 H I e IR − Y e − 5 L I H I e 3 R + h.c., − Y ν 1 L I ( iσ 2 ) H ∗ S ν IR − Y ν 3 L 3 ( iσ 2 ) H ∗ L Yν = S ν 3 R Y ν 2 [ L I κ IJ ( iσ 2 ) H ∗ 1 ν JR + L I η IJ ( iσ 2 ) H ∗ − 2 ν JR ] Y ν 4 L 3 ( iσ 2 ) H ∗ I ν IR − Y ν 5 L I ( iσ 2 ) H ∗ − I ν 3 R + h.c. � 0 � � 1 � 1 0 κ = ; η = I, J = 1 , 2 1 0 0 − 1 Furthermore, the Majorana mass terms for the right handed neutrinos are − ν T IR C M I ν IR − M 3 ν T L M = 3 R Cν 3 R , C is the charge conjugation matrix. 5

  7. Mass matrices We will assume that < H D 1 > = < H D 2 > � = 0 and < H 3 > � = 0 and � 246 � 2 < H 3 > 2 + < H D 1 > 2 + < H D 2 > 2 ≈ 2 GeV Then, the Yukawa interactions yield mass matrices of the general form   µ 1 + µ 2 µ 2 µ 5 M = µ 2 µ 1 − µ 2 µ 5   µ 4 µ 4 µ 3 The Majorana masses for ν L are obtained from the see-saw mechanism − 1 ( M νD ) T M ν = M νD ˜ ˜ M with M = diag ( M 1 , M 2 , M 3 ) 6

  8. Mixing matrices The mass matrices are diagonalized by unitary matrices � � U † = diag m d ( u,e ) m s ( c,µ ) m b ( t,τ ) d ( u,e ) L M d ( u,e ) U d ( u,e ) R and � � U T ν M ν U ν = diag m ν 1 , m ν 2 , m ν 3 The masses can be complex, and so, U eL is such that � | m e | 2 , | m µ | 2 , | m τ | 2 � U † eL M e M † e U eL = diag , etc. The quark mixing matrix is U † V CKM = uL U dL and, the neutrino mixing matrix is U † = eL U ν V MNS 7

  9. Masses and mixings in the quark sector The mass matrices for the quark sector take the general form  µ u ( d ) + µ u ( d ) µ u ( d ) µ u ( d )  1 2 2 5 µ u ( d ) µ u ( d ) − µ u ( d ) µ u ( d ) M u ( d ) =   2 1 2 5   µ u ( d ) µ u ( d ) µ u ( d ) 4 4 3 � | m u ( d ) | 2 , | m c ( s ) | 2 , | m t ( b ) | 2 � U † u ( d ) L M u ( d ) M † u ( d ) U u ( d ) L = diag , U † V CKM = uL U dL The set of dimensionless parameters µ u 1 /µ u µ u 3 /µ u µ u 2 /µ u 0 = − 0 . 000293 , 0 = − 0 . 00028 , 0 = 1 , µ u 4 /µ u µ u 5 /µ u 0 = 0 . 031 , 0 = 0 . 0386 , µ d 1 /µ d µ d 3 /µ d µ d 2 /µ d 0 = 0 . 0004 , 0 = 0 . 00275 , 0 = 1 + 1 . 2 I, µ d 4 /µ d µ d 5 /µ d 0 = 0 . 283 , 0 = 0 . 058 , 8

  10. The quark mixing matrix Yields the mass hierarchy and the mixing matrix m u /m t = 2 . 5469 × 10 − 5 , m c /m t = 3 . 9918 × 10 − 3 , m d /m b = 1 . 5261 × 10 − 3 , m s /m b = 3 . 2319 × 10 − 2 , The computed mixing matrix is   0 . 968 + 0 . 117 I 0 . 198 + 0 . 0974 I − 0 . 00253 − 0 . 00354 I V CKM = − 0 . 198 + 0 . 0969 I 0 . 968 − 0 . 115 I − 0 . 0222 − 0 . 0376 I   0 . 00211 + 0 . 00648 I 0 . 0179 − 0 . 0395 I 0 . 999 − 0 . 00206 I   0 . 975 0 . 221 0 . 00435 | V th CKM | = 0 . 221 0 . 974 0 . 0437   0 . 00682 0 . 0434 0 . 999 which should be compared with  (3 . 96 ± 0 . 09) × 10 − 3  0 . 97383 ± 0 . 00024 0 . 2272 ± 0 . 0010 | V exp (42 . 21 ± 0 . 45 ± 0 . 09) × 10 − 3 CKM | = 0 . 2271 ± 0 . 010 0 . 97296 ± 0 . 00024     (8 . 14 ± 0 . 5) × 10 − 3 (41 . 61 ± 0 . 12) × 10 − 3 0 . 9991 ± 0 . 000034 The Jarlskog invariant is J = Im [( V CKM ) 11 ( V CKM ) 22 ( V ∗ CKM ) 12 ( V ∗ CKM ) 21 ] = 2 . 9 × 10 − 5 , J exp = (3 . 0 ± 0 . 3) × 10 − 5 9

  11. The leptonic sector To achieve a further reduction of the number of parameters, in the leptonic sector, we introduce an additional discrete Z 2 symmetry − + H I , ν 3 R H S , L 3 , L I , e 3 R , e IR , ν IR then, Y e 1 = Y e 3 = Y ν 1 = Y ν 5 = 0 Hence, the leptonic mass matrices are µ e µ e µ e µ ν µ ν     0 2 2 5 2 2 µ e − µ e µ e µ ν − µ ν M e = and M νD = 0  2 2 5   2 2  µ e µ e µ ν µ ν µ ν 0 4 4 4 4 3 10

  12. The Mass Matrix of the charged leptons as function of its eigenvalues The mass matrix of the charged leptons is �  1+ x 2 − ˜ m 2  mµ ˜ mµ ˜ µ 1 1 1 √ √ √ √ √ 1+ x 2 1+ x 2 1+ x 2 2 2 2         � m 2 1+ x 2 − ˜   mµ ˜ mµ ˜ µ 1 − 1 1 M e ≈ m τ √ √ . √ √ √   1+ x 2 1+ x 2 1+ x 2  2 2 2        me (1+ x 2) me (1+ x 2)   ˜ ˜ e iδe e iδe 0   � � m 2 m 2 1+ x 2 − ˜ 1+ x 2 − ˜ µ µ x = m e /m µ , m µ = m µ /m τ and ˜ ˜ m e = m e /m τ This expression is accurate to order 10 − 9 in units of the τ mass There are no free parameters in M e other than the Dirac Phase δ !! 11

  13. The Unitary Matrix U eL The unitary matrix U eL is calculated from U † eL M e M † m 2 e , m 2 µ , m 2 � � eL U eL = diag τ We find 1 , 1 , e iδD � � U eL = Φ eL O eL , Φ eL = diag and m 2 µ +4 x 2+ ˜ m 4 m 2 m 2 m 4 m 2   (1+2 ˜ µ +2 ˜ e ) (1 − 2 ˜ µ + ˜ µ − 2 ˜ e ) 1 − 1 1 2 x √ √ √ � � m 2 m 4 m 6 m 2 2 m 2 m 4 m 6 m 2 2 µ +5 x 2 − ˜ e +12 x 4 µ + x 2+6 ˜ 1+ ˜ µ − ˜ µ + ˜ 1 − 4 ˜ µ − 4 ˜ µ − 5 ˜  e        (1+4 x 2 − ˜ m 4 m 2 m 2 m 4 µ − 2 ˜ e ) (1 − 2 ˜ µ + ˜ µ )   − 1 1 1 2 x √ √ √ O eL ≈ ,   � � m 2 m 4 m 6 m 2 2 m 2 m 4 m 6 m 2 2 µ +5 x 2 − ˜ e +12 x 4 µ + x 2+6 ˜ 1+ ˜ µ − ˜ µ + ˜ 1 − 4 ˜ µ − 4 ˜ µ − 5 ˜   e     √   � m 2 µ + x 2 − 2 ˜ m 2 (1+ x 2 − ˜ m 2 m 2 � 1+2 x 2 − ˜ m 2 m 2 1+2 x 2 − ˜ m 2 m 2   1+ x 2 ˜ µ − ˜ e (1+ ˜ e ) µ − 2 ˜ e ) µ − ˜ e me ˜ mµ − − x   � � � m 2 m 4 m 6 m 2 m 2 m 4 m 6 m 2 m 2 µ +5 x 2 − ˜ e +12 x 4 µ + x 2+6 ˜ 1+ x 2 − ˜ 1+ ˜ µ − ˜ µ + ˜ 1 − 4 ˜ µ − 4 ˜ µ − 5 ˜ e µ x = m e /m µ , m µ = m µ /m τ and ˜ ˜ m e = m e /m τ 12

  14. The neutrino mass matrix I The Majorana masses for ν L are obtained from the see-saw mechanism M − 1 R M T M ν = M νD ˜ νD with ˜ � � M R = diag M 1 , M 2 , M 3 M 1 � = M 2 � = M 3 and   µ 2 µ 2 0 = µ 2 − µ 2 0 M ν   µ 4 µ 4 µ 3 Then  2 µ 2  2 µ 2 µ 4 2 λµ 2 2 ¯ ¯ 2 M M  2 µ 2  M ν =  . 2 λµ 2  2  2 λ 2 µ 2 µ 4 ¯  2  M 2 µ 2 µ 2  2 µ 2 µ 4 4 3 2 λµ 2 µ 4 M + ¯ ¯ ¯ M M � 1 � 1 M = 1 1 1 λ = 1 1 � � + and − ¯ 2 M 1 M 2 2 M 1 M 2 13

  15. The neutrino mass matrix II M ( o ) is reparametrized in term of the neutrinomasses ν M ν = M (0) + δM µ ν �   ( m ν 3 − m ν 1 )( m ν 2 − m ν 3 ) e − iδν m ν 3 0 M (0)   = 0 m ν 3 0   ν   � ( m ν 3 − m ν 1 )( m ν 2 − m ν 3 ) e − iδν m ν 1 + m ν 2 − m ν 3 ) e − 2 iδν � 0   0 1 0 mν 1 mν 2 mν 1 � 1 0 (1 − mν 2 )( mν 3 − mν 3 ) δM ν = 2 λµ 2     2  mν 1 mν 2 mν 1  � 0 (1 − mν 2 )( mν 3 − mν 3 ) 0 2 λµ 2 = m ν 3 µ 2 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend