constraining h s s at lepton colliders
play

Constraining h s s at lepton colliders Matthias Schla ff er - PowerPoint PPT Presentation

Constraining h s s at lepton colliders Matthias Schla ff er Weizmann Institute of Science based on ongoing work with: J. Duarte-Campderros, G. Perez, A. So ff er GGI, Florence August 2018 Gauge boson masses Higgs is main source of


  1. Constraining h → s ¯ s at lepton colliders Matthias Schla ff er Weizmann Institute of Science based on ongoing work with: J. Duarte-Campderros, G. Perez, A. So ff er GGI, Florence August 2018

  2. Gauge boson masses Higgs is main source of electroweak symmetry breaking! ATLAS+CMS ATLAS and CMS LHC Run 1 ATLAS CMS ± 1 σ γ γ µ ± 2 σ µ X = σ BR X | meas. σ BR X | SM ZZ µ WW µ τ τ µ bb µ − 1 − 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 Parameter value [1606.02266] Higgs couples to gauge bosons as expected Matthias Schla ff er 1

  3. What about fermion masses? SM: economic solution, Higgs does it! h v m ψ ∝ y ⇒ ⇒ V t v m 1 ATLAS and CMS Z V W LHC Run 1 κ or F − 1 10 m v F κ b τ − 2 10 ATLAS+CMS SM Higgs boson 3 − 10 µ [M, ε ] fit 68% CL 95% CL 4 10 − − 1 2 10 1 10 10 Particle mass [GeV] [1606.02266] Matthias Schla ff er 2

  4. However n e o m g m s r n n n o t g c w o r a a t g e u u t p p o r h o i l t m a H o e u d s c b t t | | | | | | | | | | Large mass hierarchy Mass [ eV ] 10 6 10 7 10 8 10 9 10 10 10 11 10 12 [Thanks to Gilad Perez] Matthias Schla ff er 3

  5. Measurement of Yukawa couplings Does the SM Higgs generate fermion masses? � prod × BR ( h → X ) µ X = � SM × BR SM ( h → X ) > tth , h → ⌧⌧ , h → bb > 5 � ( X ) > h → µµ : µ µµ < 2 . 8 at 95 % CL [ATLAS: 1705.04582, CMS: 1807.06325] Lighter fermions even less constrained! Matthias Schla ff er 4

  6. Di ffi culties i) small branching ratio Branching Ratio LHC HIGGS XS WG 2016 1 b b WW gg -1 10 τ τ c c ZZ -2 10 γ γ -3 10 Z γ [LHCHXSWG] µ µ -4 10 120 121 122 123 124 125 126 127 128 129 130 M [GeV] n e H m o g m r n n s n o t o r g c w a a t g e u u t p p o r h o m a i o l t H e u d s c b t t | | | | | | | | | | Mass [ eV ] 10 6 10 7 10 8 10 9 10 10 10 11 10 12 Matthias Schla ff er 5

  7. Di ffi culties i) small branching ratio ii) di ffi cult final state for quarks Branching Ratio LHC HIGGS XS WG 2016 1 > quarks appear as jets b b WW > large background gg -1 10 τ τ > hard to distinguish c c ZZ -2 10 Nevertheless: γ γ h → cc will be measured at % -3 10 level at FCC-ee [1310.8361] Z γ [LHCHXSWG] µ µ What about strange? -4 10 120 121 122 123 124 125 126 127 128 129 130 M [GeV] n e H m o g m r n n s n o t o r g c w a a t g e u u t p p o r h o m a i o l t H e u d s c b t t | | | | | | | | | | Mass [ eV ] 10 6 10 7 10 8 10 9 10 10 10 11 10 12 Matthias Schla ff er 5

  8. Exclusive decay h → φγ [1306.5770, 1406.1722] � � o o ¯ s ¯ s s s + h h � � s ) → K + ( u ¯ > Clean decay: BR ( � ( s ¯ s ) + K − (¯ us )) ≈ 50% > BUT: BR ( h → �� ) ≈ 2 × 10 − 6 [1505.03870] s ) ≈ 2 × 10 − 4 > compare BR ( h → s ¯ > only weak limit at future (hadron) colliders [1406.1722] > current limit: BR ( h → �� ) < 4 . 8 × 10 − 4 [1712.02758] Ideas to use di ff erential distributions [see e.g. 1606.09253, 1606.09621, 1609.06592, 1611.05463] Matthias Schla ff er 6

  9. Brute force method Alternative ansatz: > FCC-ee will produce O (10 6 − 10 7 ) Higgses via e − Z Z ∗ e + h > O (200 − 2000) of which decay into strange quarks > tag strange jets > Done before in Z → s ¯ s – Measurement of the strange quark forward backward asymmetry around the Z0 peak [DELPHI Collaboration, Eur.Phys.J. C14 (2000)] – Light quark fragmentation in polarized Z0 decays [SLD Collaboration, Nucl.Phys.Proc.Suppl. 96 (2001)] Matthias Schla ff er 7

  10. Setup and assumptions h → jj data ⇒ kinematic separation s -tagger ⇒ limit other bkg cut&count, BDT,...

  11. Setup and assumptions h → jj data ⇒ kinematic separation s -tagger ⇒ limit other bkg cut&count, BDT,... Part I: > Clean sample with 10 7 Higgses > Only background other Higgs decays ( h → gg , bb , cc ) > We know which jets originate from the Higgs decay > Generate and shower with PYTHIA > No detector simulation Matthias Schla ff er 8

  12. Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. Matthias Schla ff er 9

  13. Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. In which kaons can a s quark hadronize? K 0 S K ± K 0 L Matthias Schla ff er 9

  14. Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. In which kaons can a s quark hadronize? 1 / 6 vis. K ± inv. 1 / 3 Matthias Schla ff er 9

  15. Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. In which kaons can a s quark hadronize? 1 / 6 1 / 6 vis. vis. K ± K ± inv. 1 / 3 inv. 1 / 3 CC/NC/NN=9/6/1 Matthias Schla ff er 9

  16. Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. Charged kaon reconstruction: > stable on detector scales > tracking e ffi ciency 95% > Particle ID 2 � bench marks e.g.: > no ID ⇡ ± K ± > ✏ K = 95% ✏ π = 12% some observable Matthias Schla ff er 9

  17. Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. Charged kaon reconstruction: > stable on detector scales > tracking e ffi ciency 95% > Particle ID [TopLC17 talk by Kurata] Matthias Schla ff er 9

  18. � Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. Charged kaon reconstruction: > stable on detector scales > tracking e ffi ciency 95% > Particle ID 3.0 2.5 dE / dx resolution 2.0 10 % 1.5 7 % 6 % 1.0 5 % 0.5 4 % 0.0 [TopLC17 talk by Kurata] 0.1 0.5 1 5 10 50 100 p [ GeV ] Matthias Schla ff er 9

  19. Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. Neutral K 0 s reconstruction: > Decay length ∼ 80 cm > Needs to decay to ⇡ ± within 5 mm < R < 1 m > reconstruction e ffi ciency 80% Matthias Schla ff er 9

  20. Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. Neutral K 0 s reconstruction: > Decay length ∼ 80 cm > Needs to decay to ⇡ ± within 5 mm < R < 1 m > reconstruction e ffi ciency 80% softer > Keep hardest pair of kaons jet 1 K + K − K 0 K + with charge sum | q 1 + q 2 | < 2 s > Split into CC, NC and NN jet 2 K + K 0 channel s Matthias Schla ff er 9

  21. Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. Impact parameter > straight extrapolation of A.U. s s s s s s s s s s tracks 100 b b b b b b b b b b c c c c c c c c c c > no vertexing gg gg gg gg gg > O (60 − 80%) of kaon can- WW* WW* WW* WW* WW* didates in b -jets stem from b -decays 50 > O (40%) of kaon candidates in c -jets stem from c -decays > smearing according to mo- Preliminary mentum and angle 0 0.01 0.02 0.03 |d | [mm] > 5 µ m uncertainty on IP 0 Matthias Schla ff er 9

  22. Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. Fragmentation functions Z ) D K ± ( x, M 2 s g [adapted from 0803.2768] Matthias Schla ff er 9

  23. Setup for an s -tagger Ansatz: s -jets dominantly contain a prompt kaon that carries a large fraction of the jet momentum. parallel kaon momentum A.U. 0.15 Preliminary s s s s s s s s s s b b b b b b b b b b c c c c c c c c c c gg gg gg gg gg WW* WW* WW* WW* WW* 0.1 > candidates from non- s -jets are soft, especially in g -jets > here: p ( jet ) ≈ 60 GeV 0.05 0 5 10 15 20 p [GeV] || Matthias Schla ff er 9

  24. s -tagging performance in CC channel > impact parameter d 0 < 15 µ m no particle ID 10 0 Preliminary 10 - 1 10 - 2 B � 10 - 3 10 - 4 10 - 5 0 2 4 6 8 10 12 14 cut [ GeV ] p || ss gg bb cc uu dd W Matthias Schla ff er 10

  25. s -tagging performance in CC channel > impact parameter d 0 < 15 µ m with particle ID: ✏ K = 95% , ✏ π = 12% 10 0 Preliminary 10 - 1 10 - 2 B � 10 - 3 10 - 4 10 - 5 0 2 4 6 8 10 12 14 cut [ GeV ] p || ss gg bb cc uu dd W Matthias Schla ff er 10

  26. Number of events > impact parameter d 0 < 15 µ m no particle ID Preliminary 10 - 2 10 - 4 BR · � 10 - 6 10 - 8 0 5 10 15 20 cut [ GeV ] p || ss gg bb cc uu dd W Matthias Schla ff er 11

  27. Number of events > impact parameter d 0 < 15 µ m with particle ID: ✏ K = 95% , ✏ π = 12% Preliminary 10 - 2 10 - 4 BR · � 10 - 6 10 - 8 0 5 10 15 20 cut [ GeV ] p || ss gg bb cc uu dd W Matthias Schla ff er 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend