consequences of a xenonnt lz signal for the lhc and
play

Consequences of a XENONnT/LZ signal for the LHC and thermal dark - PowerPoint PPT Presentation

Consequences of a XENONnT/LZ signal for the LHC and thermal dark matter production in collaboration with S. Baum, R. Catena, J. Conrad, K. Freese [arXiv:1709.06051, 1712.07969] Martin B. Krauss Partikeldagarna 2018 October 13 th , 2018 Lund


  1. Consequences of a XENONnT/LZ signal for the LHC and thermal dark matter production in collaboration with S. Baum, R. Catena, J. Conrad, K. Freese [arXiv:1709.06051, 1712.07969] Martin B. Krauss Partikeldagarna 2018 October 13 th , 2018 Lund

  2. Overview � After potential DM discovery, what can we learn about DM properties? � XENONnT will start 2019 � LHC Run 3 planned start in 2020, 300 fb − 1 in 2022 � Assuming O (100) XENONnT events in 2021 (˜20 ton × year exposure) (just below current limits) � Non-relativistic EFT and simplified DM models as framework → What predictions can be made for LHC Run 3 monojet (and dijet) searches? → Is a discovery compatible with thermal production? → Using complementarity in DM searches, what can we learn about DM properties? (mass, couplings, spin,...) 1 / 15

  3. i i Simplified models & EFT ˆ O 1 = 1 χ 1 N � � ˆ q v ⊥ ˆ O 3 = i ˆ S N · × ˆ 1 χ mN ˆ O 4 = ˆ S χ · ˆ S N � � q v ⊥ ˆ ˆ O 5 = i ˆ S χ · × ˆ 1 N mN � � � � q ˆ q ˆ ˆ O 6 = S χ · ˆ S N · ˆ mN mN ˆ v ⊥ 1 χ O 7 = ˆ S N · ˆ v ⊥ 1 N ˆ O 8 = ˆ S χ · ˆ � � q ˆ ˆ O 9 = i ˆ ˆ S χ · S N × mN ˆ q ˆ O 10 = i ˆ S N · 1 χ mN q ˆ ˆ O 11 = i ˆ S χ · 1 N mN ˆ � v ⊥ � O 12 = ˆ ˆ S χ · S N × ˆ v ⊥ � � � � q ˆ ˆ O 13 = i S χ · ˆ ˆ S N · ˆ mN � � � ˆ q v ⊥ � ˆ O 14 = i S χ · ˆ S N · ˆ ˆ mN � � �� � q ˆ v ⊥ � q ˆ ˆ O 15 = − S χ · ˆ S N × ˆ ˆ · mN mN q ˆ v ⊥ 1 N ˆ O 17 = i · S · ˆ mN q ˆ ˆ · S · ˆ O 18 = i SN mN [Fitzpatrick et al., 2012] 2 / 15

  4. Simplified models & EFT 1 1 G′ µν G µν + m 2 GGµGµ χ / L χGq = i ¯ Dχ − mχ ¯ χχ − ˆ 4 2 O 1 = 1 χ 1 N � � λG q ˆ v ⊥ ˆ ( GµGµ )2 + i ¯ O 3 = i ˆ S N · × ˆ 1 χ q / − Dq − mq ¯ qq mN 4 ˆ O 4 = ˆ S χ · ˆ S N λ 3 � � χγµγ 5 χGµ q v ⊥ χγµχGµ − λ 4 ¯ ˆ ˆ O 5 = i ˆ − ¯ S χ · × ˆ 1 N mN 2 � � � � q q ˆ ˆ ˆ O 6 = S χ · ˆ S N · ˆ qγµq ) Gµ − h 4(¯ qγµγ 5 q ) Gµ . mN mN − h 3(¯ ˆ v ⊥ 1 χ O 7 = ˆ S N · ˆ v ⊥ 1 N ˆ O 8 = ˆ S χ · ˆ � � q ˆ ˆ O 9 = i ˆ ˆ S χ · S N × mN ˆ q ˆ O 10 = i ˆ S N · 1 χ mN q ˆ ˆ O 11 = i ˆ S χ · 1 N mN ˆ � v ⊥ � O 12 = ˆ ˆ S χ · S N × ˆ v ⊥ � � � � ˆ q ˆ O 13 = i S χ · ˆ ˆ S N · ˆ mN � � � ˆ q v ⊥ � ˆ O 14 = i S χ · ˆ S N · ˆ ˆ mN � � �� � q ˆ v ⊥ � q ˆ ˆ O 15 = − S χ · ˆ S N × ˆ ˆ · mN mN q ˆ v ⊥ 1 N ˆ O 17 = i · S · ˆ mN q ˆ ˆ · S · ˆ O 18 = i SN mN [Fitzpatrick et al., 2012] 2 / 15

  5. Simplified models & EFT 1 1 G′ µν G µν + m 2 GGµGµ L χGq = i ¯ χ / Dχ − mχ ¯ χχ − 4 2 ˆ O 1 = 1 χ 1 N � � λG q ˆ ˆ v ⊥ ( GµGµ )2 + i ¯ O 3 = i ˆ S N · × ˆ 1 χ − q / Dq − mq ¯ qq mN 4 ˆ O 4 = ˆ S χ · ˆ S N λ 3 � � χγµχGµ − λ 4 ¯ χγµγ 5 χGµ q ˆ ˆ v ⊥ ¯ O 5 = i ˆ − S χ · × ˆ 1 N mN 2 � � � � q q ˆ ˆ ˆ O 6 = ˆ ˆ qγµq ) Gµ − h 4(¯ qγµγ 5 q ) Gµ . S χ · S N · − h 3(¯ mN mN ˆ v ⊥ 1 χ O 7 = ˆ S N · ˆ v ⊥ 1 N ˆ O 8 = ˆ S χ · ˆ � � q ↓ ˆ ˆ O 9 = i ˆ ˆ [Dent et al., 2015] S χ · S N × mN q ˆ ˆ O 10 = i ˆ S N · 1 χ mN q ˆ O 11 = i ˆ ˆ S χ · 1 N mN � v ⊥ � O 12 = ˆ ˆ ˆ S χ · S N × ˆ v ⊥ � � � � q ˆ ˆ O 13 = i S χ · ˆ ˆ S N · ˆ mN � � � ˆ q v ⊥ � ˆ O 14 = i S χ · ˆ S N · ˆ ˆ mN � � �� � q ˆ v ⊥ � q ˆ ˆ O 15 = − S χ · ˆ S N × ˆ ˆ · mN mN q ˆ v ⊥ 1 N ˆ O 17 = i · S · ˆ mN q ˆ ˆ · S · ˆ O 18 = i SN mN [Fitzpatrick et al., 2012] 2 / 15

  6. Simplified models & EFT 1 1 G′ µν G µν + m 2 GGµGµ L χGq = i ¯ χ / Dχ − mχ ¯ χχ − 4 2 ˆ O 1 = 1 χ 1 N λG � � ( GµGµ )2 + i ¯ q ˆ v ⊥ q / Dq − mq ¯ O 3 = i ˆ ˆ − qq S N · × ˆ 1 χ mN 4 ˆ O 4 = ˆ S χ · ˆ S N λ 3 χγµχGµ − λ 4 ¯ χγµγ 5 χGµ � � − ¯ q ˆ v ⊥ ˆ O 5 = i ˆ S χ · × ˆ 1 N 2 mN � � � � ˆ qγµq ) Gµ − h 4(¯ qγµγ 5 q ) Gµ . q ˆ q ˆ ˆ ˆ − h 3(¯ O 6 = S χ · S N · mN mN v ⊥ 1 χ ˆ O 7 = ˆ S N · ˆ ˆ v ⊥ 1 N O 8 = ˆ S χ · ˆ � � q ˆ ˆ O 9 = i ˆ S χ · S N × ˆ mN ˆ q O 10 = i ˆ ˆ S N · 1 χ mN q ˆ ˆ O 11 = i ˆ S χ · 1 N mN � v ⊥ � ˆ O 12 = ˆ S χ · S N × ˆ ˆ v ⊥ � � � q ˆ � ˆ ˆ ˆ O 13 = i S χ · ˆ S N · mN � � � q ˆ ˆ v ⊥ � ˆ ˆ O 14 = i S χ · S N · ˆ mN → � � �� � q q ˆ ˆ v ⊥ � ˆ ˆ ˆ O 15 = − S χ · S N × ˆ · mN mN q ˆ ˆ v ⊥ 1 N O 17 = i · S · ˆ mN q ˆ ˆ · S · ˆ O 18 = i SN mN [Fitzpatrick et al., 2012] 2 / 15

  7. Simplified models & EFT 1 1 G′ µν G µν + m 2 GGµGµ L χGq = i ¯ χ / Dχ − mχ ¯ χχ − 4 2 ˆ O 1 = 1 χ 1 N λG ( GµGµ )2 + i ¯ q / � � − Dq − mq ¯ qq q ˆ v ⊥ ˆ O 3 = i ˆ S N · × ˆ 1 χ 4 mN ˆ λ 3 O 4 = ˆ S χ · ˆ S N χγµχGµ − λ 4 ¯ χγµγ 5 χGµ − ¯ � � q ˆ ˆ v ⊥ O 5 = i ˆ 2 S χ · × ˆ 1 N mN qγµq ) Gµ − h 4(¯ qγµγ 5 q ) Gµ . � � � � q q ˆ − h 3(¯ ˆ ˆ O 6 = ˆ ˆ S χ · S N · mN mN ˆ v ⊥ 1 χ O 7 = ˆ S N · ˆ v ⊥ 1 N ˆ O 8 = ˆ S χ · ˆ ↓ [Dent et al., 2015] � � q ˆ ˆ O 9 = i ˆ ˆ S χ · S N × mN q ˆ ˆ O 10 = i ˆ S N · 1 χ mN q ˆ ˆ O 11 = i ˆ S χ · 1 N mN � v ⊥ � O 12 = ˆ ˆ ˆ S χ · S N × ˆ v ⊥ � � � � q ˆ ˆ O 13 = i S χ · ˆ ˆ S N · ˆ mN � � � ˆ q v ⊥ � ˆ O 14 = i S χ · ˆ S N · ˆ ˆ mN → � � �� � q ˆ v ⊥ � q ˆ ˆ O 15 = − S χ · ˆ S N × ˆ ˆ · mN mN q ˆ v ⊥ 1 N ˆ O 17 = i · S · ˆ mN q ˆ ˆ · S · ˆ O 18 = i SN mN [Fitzpatrick et al., 2012] 2 / 15

  8. Benchmark points from direct detection Benchmark points Spin 0 DM Op. gq g DM M eff [GeV] Direct detection can only constrain 1 14564.484 h 1 g 1 1 h 3 g 4 10260.217 7 h 4 g 4 4.509 M eff ≡ 0 . 1 M med . 10 h 2 g 1 10.706 √ g q g DM Spin 1/2 DM Op. gq g DM M eff [GeV] 1 14564.484 h 1 λ 1 Assume XENONnT(/LZ) detects O (100) (S1) 1 7255.068 h 3 λ 3 4 h 4 λ 4 147.354 signal events with an exposure of 6 h 2 λ 2 0.286 ε = 20 ton × year 7 h 4 λ 3 3.188 8 h 3 λ 4 225.159 10 10.706 h 2 λ 1 → Calculate M eff for various combinations of 11 h 1 λ 2 351.589 couplings and mediators. Spin 1/2 DM Op. gq g DM M eff [GeV] 1 h 1 b 1 14564.484 1 h 3 b 5 10260.216 Operators with larger supression 4 ℜ ( b 7 ) 188.302 h 4 4 h 4 ℑ ( b 7 ) 3.215 ↓ 5 h 3 ℑ ( b 6 ) 6.946 smaller M eff 7 h 4 b 5 4.509 8 h 3 ℜ ( b 7 ) 287.728 9 h 4 ℑ ( b 6 ) 3.674 10 10.706 h 2 b 1 11 h 3 ℑ ( b 7 ) 223.794 3 / 15

  9. Impact on LHC monojet searches g q � Translating the O (100) XENONnT DM events into regions in the M med - σ plane � Mediator necessarily couples to quarks. G µ → Can be produced in pp collisions g q g DM � Can decay into pair of DM particles ( E T miss ) � Initial state radiation (e.g., gluon) q ¯ DM → jet in detector Current Limits and projections For 12 . 9 fb − 1 integrated luminosity → monojet limit σ × A ≈ 40 fb (Event level with selection cuts). √ For projections after Run 3 we consider scaling with L and L . 4 / 15

  10. Monojet predictions spin 0 DM Limits and projections � ˆ O 1( h 1 , g 1) —— current limit 10 2 10 2 � ˆ O 1( h 3 , g 4) - - - projected sensitivity √ 300 fb − 1 ( L ) 1 1 spin 1 2 DM —— projected sensitivity 300 fb − 1 ( L ) ˆ � O 1( h 1 , λ 1) 10 - 2 10 - 2 ˆ � O 1( h 3 , λ 3) � × A / fb ˆ � O 4( h 4 , λ 4) 10 - 4 10 - 4 ˆ � O 8( h 3 , λ 4) � ˆ O 11( h 1 , λ 2) 10 - 6 10 - 6 spin 1 DM 10 - 8 10 - 8 ˆ � O 1( h 1 , b 1) ˆ � O 1( h 3 , b 5) 10 - 10 10 - 10 2000 4000 6000 8000 10000 M med / GeV Combining spectral information from direct detection with the discovery or lack of discovery of a monojet signal at the LHC can provide important information about the nature of the DM and mediator. 5 / 15

  11. DM thermal production DM in the early Universe in thermal equilibrium DM + DM ⇆ SM + SM . Boltzmann equation n + 3 Hn = −� σv Møl � ( n 2 − n 2 ˙ eq ) with the thermally averaged annihilation cross-section � ∞ � σv Møl � = d ǫ K ( x, ǫ ) σv lab 0 and x = m T . 6 / 15

  12. Results for scalar DM 40 Simplified models corresponding to spin 30 0 DM. O 1 ( h 1 , g 1 ) O 10 ( h 2 , g 1 ) � ˆ O 7 ( h 4 , g 4 ) and ˆ x f 20 O 1 ( h 3 , g 4 ) O 10 ( h 2 , g 1 ) not O 7 ( h 4 , g 4 ) compatible with the thermal 10 production mechanism for any value of M med . 0 � Ω DM h 2 much smaller than observed. 50 100 150 200 250 300 M med / GeV � ˆ O 1 ( h 1 , g 1 ) and ˆ O 1 ( h 3 , g 4 ) generate 10 6 values for Ω DM h 2 which are in O 1 ( h 1 , g 1 ) 1000 general too large O 10 ( h 2 , g 1 ) O 1 ( h 3 , g 4 ) � For M med ∼ 100 GeV Ω DM h 2 1 O 7 ( h 4 , g 4 ) → resonant production of DM 0.001 → compatible with observed relic density AND XENONnT/LZ signal 10 - 6 50 100 150 200 250 300 M med / GeV 7 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend