computing betweenness centrality in link streams
play

Computing Betweenness Centrality in Link Streams Cl emence Magnien - PowerPoint PPT Presentation

Computing Betweenness Centrality in Link Streams Cl emence Magnien joint work with Fr ed eric Simard and Matthieu Latapy July 2020 clemence.magnien@lip6.fr july 2020 1/10 Link Streams definitions link stream L = ( T , V , E


  1. Computing Betweenness Centrality in Link Streams Cl´ emence Magnien joint work with Fr´ ed´ eric Simard and Matthieu Latapy July 2020 clemence.magnien@lip6.fr – july 2020 – 1/10

  2. Link Streams – definitions link stream L = ( T , V , E ) T = [ α, ω ] ⊂ R , V finite set, E ⊆ T × V ⊗ V ( t , uv ) ∈ E ⇔ u and v are linked at time t link segment [ i , j ] × { uv } ⊆ E with [ i , j ] maximal here: finite number of link segments (incl. singletons) temporal node ( t , u ) ∈ T × V clemence.magnien@lip6.fr – july 2020 – 2/10

  3. Link Streams – definitions link stream L = ( T , V , E ) T = [ α, ω ] ⊂ R , V finite set, E ⊆ T × V ⊗ V ( t , uv ) ∈ E ⇔ u and v are linked at time t link segment [ i , j ] × { uv } ⊆ E with [ i , j ] maximal here: finite number of link segments (incl. singletons) temporal node ( t , u ) ∈ T × V a b c d e 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 time exs: [9 , 11] × { de } , { 16 } × { de } , [23 , 24] × { de } , [30 , 31] × { de } clemence.magnien@lip6.fr – july 2020 – 2/10

  4. (Shortest Fastest) Paths a b c d e 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 time clemence.magnien@lip6.fr – july 2020 – 3/10

  5. (Shortest Fastest) Paths a b c d e 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 time path ( x , u ) − → ( y , v ): length: k duration: t k − t 1 v 0 , t 1 , v 1 , t 2 , v 2 , . . . t k , v k shortest paths fastest paths such that u = v 0 , v k = v , → shortest fastest paths (sfp) x ≤ t 1 ≤ t 2 ≤ · · · ≤ t k ≤ y , ֒ and ( t i , v i − 1 v i ) ∈ E for all i clemence.magnien@lip6.fr – july 2020 – 3/10

  6. (Shortest Fastest) Paths a b c d e 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 time path ( x , u ) − → ( y , v ): length: k duration: t k − t 1 v 0 , t 1 , v 1 , t 2 , v 2 , . . . t k , v k shortest paths fastest paths such that u = v 0 , v k = v , → shortest fastest paths (sfp) x ≤ t 1 ≤ t 2 ≤ · · · ≤ t k ≤ y , ֒ and ( t i , v i − 1 v i ) ∈ E for all i some paths from (0 , a ) to (26 , e ): a , 2 , b , 4 , c , 6 , d , 9 , e fastest path , length 4, duration 7, not shortest a , 9 , c , 18 , d , 23 , e shortest path , length 3, duration 14, not fastest a , 2 , b , 4 , c , 6 , d , 9 , e shortest fastest path (sfp) clemence.magnien@lip6.fr – july 2020 – 3/10

  7. (Shortest Fastest) Paths a b c d e 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 time path ( x , u ) − → ( y , v ): length: k duration: t k − t 1 v 0 , t 1 , v 1 , t 2 , v 2 , . . . t k , v k shortest paths fastest paths such that u = v 0 , v k = v , → shortest fastest paths (sfp) x ≤ t 1 ≤ t 2 ≤ · · · ≤ t k ≤ y , ֒ and ( t i , v i − 1 v i ) ∈ E for all i some paths from (0 , a ) to (26 , e ): a , 2 , b , 4 , c , 6 , d , 9 , e fastest path , length 4, duration 7, not shortest a , 9 , c , 18 , d , 23 , e shortest path , length 3, duration 14, not fastest a , 2 , b , 4 , c , 6 , d , 9 , e shortest fastest path (sfp) a , 2 , b , 5 , c , 6 , d , 9 , e too ⇒ infinity of sfp clemence.magnien@lip6.fr – july 2020 – 3/10

  8. Betweenness Centrality in Link Streams graphs: link streams: vertex, temporal vertex, shortest paths, shortest fastest paths, all u and v all ( t , u ) and ( t ′ , v ) shortest paths shortest fastest paths clemence.magnien@lip6.fr – july 2020 – 4/10

  9. Betweenness Centrality in Link Streams graphs: link streams: vertex, temporal vertex, shortest paths, shortest fastest paths, all u and v all ( t , u ) and ( t ′ , v ) shortest paths shortest fastest paths � σ (( i , u ) , ( j , w ) , ( t , v )) � B ( t , v ) = d i d j σ (( i , u ) , ( j , w )) i ∈ T , j ∈ T u ∈ V , w ∈ V � �� � fraction of all sfp ( i , u ) − → ( j , w ) that involve ( t , v ) clemence.magnien@lip6.fr – july 2020 – 4/10

  10. Example u x 2 < a ≤ b < c ≤ d < 7 and v 10 < e ≤ f < g ≤ h < 15 y w 2 a k b c l d 7 10 e m f g n h 15 time contribution of u and w to B ( t , v ) with t ∈ [ b , c ] ? two families of sfp from u to w : ◮ u , 2 , x , k , v , ℓ, y , 7 , w with k ∈ [ a , b ] and ℓ ∈ [ c , d ] ( blue family ) ( b − a ) · ( d − c ) sfp ◮ u , 10 , x , m , v , n , y , 15 , w with m ∈ [ e , f ] and n ∈ [ g , h ] ( green family ) ( f − e ) · ( h − g ) sfp clemence.magnien@lip6.fr – july 2020 – 5/10

  11. Example u x 2 < a ≤ b < c ≤ d < 7 v and 10 < e ≤ f < g ≤ h < 15 y w 2 a k b c l d 7 10 e m f g n h 15 time contribution of u and w to B ( t , v ) with t ∈ [ b , c ] ? sfp from ( i , u ) to ( j , w ) : ◮ blue ones if i ∈ [0 , 2] and j ∈ [7 , 15[ ◮ both blue and green ones i ∈ [0 , 2] and j ∈ [15 , 17] ◮ green ones if i ∈ ]2 , 10] and j ∈ [15 , 17] ◮ no sfp for all others i and j clemence.magnien@lip6.fr – july 2020 – 5/10

  12. Example u x 2 < a ≤ b < c ≤ d < 7 v and 10 < e ≤ f < g ≤ h < 15 y w 2 a k b c l d 7 10 e m f g n h 15 time contribution of u and w to B ( t , v ) with t ∈ [ b , c ] ? sfp from ( i , u ) to ( j , w ) : ◮ blue ones if i ∈ [0 , 2] and j ∈ [7 , 15[ → . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . all involve ( t , v ) ֒ ◮ both blue and green ones i ∈ [0 , 2] and j ∈ [15 , 17] → . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . blue fraction involve ( t , v ) ֒ ( b − a ) · ( d − c ) ( b − a ) · ( d − c )+( f − e ) · ( h − g ) ◮ green ones if i ∈ ]2 , 10] and j ∈ [15 , 17] → . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .none involve ( t , v ) ֒ ◮ no sfp for all others i and j clemence.magnien@lip6.fr – july 2020 – 5/10

  13. Example u x 2 < a ≤ b < c ≤ d < 7 v and 10 < e ≤ f < g ≤ h < 15 y w 2 a k b c l d 7 10 e m f g n h 15 time contribution of u and w to B ( t , v ) with t ∈ [ b , c ] ? � 2 � 15 � 2 � 17 1 d j d i + blue fraction d j d i 0 7 0 15 = 16 + 4 · blue fraction ( b − a ) · ( d − c ) blue fraction = ( b − a ) · ( d − c )+( f − e ) · ( h − g ) clemence.magnien@lip6.fr – july 2020 – 5/10

  14. Example – what if a = b ? u x v y w m n 2 c ℓ d 7 10 e f g h 15 time a=b how many blue paths? green paths ? clemence.magnien@lip6.fr – july 2020 – 6/10

  15. Example – what if a = b ? u x v y w m n 2 c ℓ d 7 10 e f g h 15 time a=b how many blue paths? green paths ? blue paths: u , 2 , x , a , v , ℓ, y , 7 , w with ℓ ∈ [ c , d ] ֒ → volume ( d − c ), dimension 1 green paths: u , 10 , x , m , v , n , y , 15 , w with m ∈ [ e , f ] and n ∈ [ g , h ] → volume ( f − e ) · ( h − g ), dimension 2 ֒ clemence.magnien@lip6.fr – july 2020 – 6/10

  16. Example – what if a = b ? u x v y w m n 2 c ℓ d 7 10 e f g h 15 time a=b how many blue paths? green paths ? blue paths: u , 2 , x , a , v , ℓ, y , 7 , w with ℓ ∈ [ c , d ] ֒ → volume ( d − c ), dimension 1 green paths: u , 10 , x , m , v , n , y , 15 , w with m ∈ [ e , f ] and n ∈ [ g , h ] → volume ( f − e ) · ( h − g ), dimension 2 ֒ fraction involving ( t , v ) ? 0 except if e = f or g = h ... clemence.magnien@lip6.fr – july 2020 – 6/10

  17. Volumes of Shortest Paths Identify times of beginning and end of fastest paths latency pairs from u to w : ( s i , a i ) clemence.magnien@lip6.fr – july 2020 – 7/10

  18. Volumes of Shortest Paths Identify times of beginning and end of fastest paths latency pairs from u to w : ( s i , a i ) → algorithm for volumes of sfp from u to w : ֒ shortest paths within each latency pair clemence.magnien@lip6.fr – july 2020 – 7/10

  19. Volumes of Shortest Paths Identify times of beginning and end of fastest paths latency pairs from u to w : ( s i , a i ) → algorithm for volumes of sfp from u to w : ֒ shortest paths within each latency pair using BFS-like from event time to event time: i,u i,u t t’ t t’ t,x t’,y t’,w t’,w path ( i , u ) − → ( t , x ) → ( t ′ , y ) path ( i , u ) − then path ( t , x ) − → ( t ′ , w ) then jump y → w at t ′ clemence.magnien@lip6.fr – july 2020 – 7/10

  20. Volumes of Shortest Paths Identify times of beginning and end of fastest paths latency pairs from u to w : ( s i , a i ) → algorithm for volumes of sfp from u to w : ֒ shortest paths within each latency pair using BFS-like from event time to event time: i,u i,u t t’ t t’ t,x t’,y t’,w t’,w path ( i , u ) − → ( t , x ) → ( t ′ , y ) path ( i , u ) − then path ( t , x ) − → ( t ′ , w ) then jump y → w at t ′ + operation on volumes (considering dimension) clemence.magnien@lip6.fr – july 2020 – 7/10

  21. Global Scheme for B ( t , v ) t,v clemence.magnien@lip6.fr – july 2020 – 8/10

  22. Global Scheme for B ( t , v ) u t,v w for all u and w : clemence.magnien@lip6.fr – july 2020 – 8/10

  23. Global Scheme for B ( t , v ) < a−s = a−s = a−s = a−s s a > a−s < a−s > a−s < a−s u t,v w for all u and w : compute latency pairs for u and w clemence.magnien@lip6.fr – july 2020 – 8/10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend