computational methods for random epidemiological models m
play

Computational Methods for Random Epidemiological Models M etodos - PowerPoint PPT Presentation

Computational Methods for Random Epidemiological Models M etodos Computacionales para el Estudio de Modelos Epidemiol ogicos con Incertidumbre Conferencias de Investigaci on para Posgrado 2016 Universidad Complutense de Madrid 24


  1. Computational Methods for Random Epidemiological Models M´ etodos Computacionales para el Estudio de Modelos Epidemiol´ ogicos con Incertidumbre Conferencias de Investigaci´ on para Posgrado 2016 Universidad Complutense de Madrid 24 junio de 2016 Prof. Dr. Juan Carlos Cort´ es Instituto Universitario de Matem´ atica Multidisciplinar Universitat Polit` ecnica de Val` encia M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 1

  2. Part I Ingredients M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 2

  3. A naive (but maybe useful) comparison: Deterministic Random r.v.’s: A ∼ N( µ = 3; σ 2 > 0) numbers: a = 3 s.p.’s: X ( t ) = At , A ∼ N( µ = 3; σ 2 > 0) functions: x ( t ) = 3 t There are s.p.’s which are not defined by algebraic formulas as Wiener process or Brownian motion { W ( t ) : t ≥ 0 } ≡ { B ( t ) : t ≥ 0 } is called the (standard) Wiener process or Brownian motion if it satisfies the following conditions: It starts at zero w.p. 1 : P [ { ω ∈ Ω : W (0)( ω ) = 0 } ] = P [ W (0) = 0 } ] = 1 . 1 It has stationary increments : 2 W ( t ) − W ( s ) d = W ( t + h ) − W ( s + h ) , ∀ h : s , t , s + h , t + h ∈ [0 , + ∞ [ . 3 It has independent increments : W ( t 2 ) − W ( t 1 ) ,..., W ( t n ) − W ( t n − 1 ) are independent r.v.’s ∀{ t i } n i =1 : 0 ≤ t 1 < t 2 < ··· < t n − 1 < t n < + ∞ , n ≥ 1 . It is Gaussian with mean zero and variance t : W ( t ) ∼ N(0; t ) , ∀ t ≥ 0 . 4 M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 3

  4. Graphical representation of a s.p. M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 4

  5. Since a s.p. X ( t ) = { X ( t ) : t ∈ T } can be considered as a collection of random vectors ( X t 1 ,..., X t n ) , t 1 ,..., t n ∈ T , n ≥ 1, we can extend the concept of expectation and covariance for random vectors to s.p.’s and consider these quantities as functions of t ∈ T : One-dimensional probabilistic description of a s.p. Expectation, variance and 1-p.d.f. of a s.p. Expectation : µ X ( t ) = E [ X ( t )], t ∈ T . X ( t ) = V [ X ( t )] = E [( X ( t )) 2 ] − ( E [ X ( t )]) 2 , t ∈ T . Variance : σ 2 1-p.d.f. : It is the p.d.f. of the r.v. X ( t ) for every t . It is denoted by f 1 ( x , t ). Two-dimensional probabilistic description of a s.p. Covariance and 2-p.d.f. of a s.p. Covariance : C X ( t 1 , t 2 ) = C [ X t 1 , X t 2 ] = E [( X ( t 1 ) − µ X ( t 1 ))( X ( t 2 ) − µ X ( t 2 ))], t 1 , t 2 ∈ T . 2-p.d.f. : It is the joint p.d.f. of the r.v.’s X ( t 1 ) and X ( t 2 ) for every t 1 and t 2 . It is denoted by f 2 ( x 1 , t 1 ; x 2 , t 2 ). M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 5

  6. Part II Linear Models M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 6

  7. Motivating the linear case: The malthusian population model with migration ¡ p ( t ) ¡ p ( t + Δ t ) ¡ t ¡ t + Δ t ¡ immigrants emigrants births deaths � �� � � �� � ���� � �� � p ( t +∆ t ) − p ( t ) = bp ( t )∆ t − dp ( t )∆ t + i ∆ t − e ∆ t , p ( t +∆ t ) − p ( t ) = kp ( t )∆ t + m ∆ t , k = b − d , m = i − e ∈ R , � p ( t +∆ t ) − p ( t ) p ( t ) ˙ = kp ( t )+ m , t > 0 , = kp ( t )+ m ⇒ p (0) = p 0 , ∆ t Malthusian population model considering migration � p ( t ) ˙ = kp ( t )+ m , t > 0 , , k = b − d , m = i − e . p (0) = p 0 , M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 7

  8. How can uncertainty be introduced? There are two main approaches: Unknown uncertainty : Wiener process or Brownian motion. It requires the so-called Itˆ o-calculus. Known uncertainty : It requires the so-called L p (Ω)-calculus. Itˆ o-Stochastic Differential Equations (SDE’s) Assuming, for instance, that the birth-rate coefficient is affected by a Gaussian perturbation ( unknown uncertainty ): � p ( t ) ˙ = kp ( t )+ m , t > 0 , k ⇒ k + λ W ′ ( t ) , , k ∈ R , λ > 0 , p (0) = p 0 , � �� � white noise d p ( t ) ( k + λ W ′ ( t )) p ( t )+ m = d t ( kp ( t )+ m ) d t + λ p ( t ) W ′ ( t ) d t d p ( t ) = � �� � d W ( t ) d p ( t ) = ( kp ( t )+ m ) d t + λ p ( t ) d W ( t ) � t � t Itˆ o Lemma p ( t ) = p 0 + 0 ( kp ( s )+ m ) d t + 0 λ p ( s ) d W ( s ) − − − − − − − − → p ( t ) � �� � Itˆ o-type integral M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 8

  9. Random Differential Equations (RDE’s) Known uncertainty : k is positive: k ∼ Exp( λ ); k ∼ Be( α ; β ). k is negative: k ∼ Un( − 2 , − 0 . 5); k ∼ N( µ ; σ ) truncated at ( − 2 , − 0 . 5). Malthusian population model considering migration � p ( t ) ˙ = kp ( t )+ m , t > 0 , , k = b − d , m = i − e . p (0) = p 0 , In practice the birth, death, immigration, emigration rates and the initial population are fixed after sampling and measurements, hence it is more realistic to consider that: k , m , p 0 are r.v.’s, defined in a common probability space , (Ω , F , P ) rather than deterministic constants ⇓ This motivates to consider the above model from a stochastic standpoint. As a consequence, its solution is a stochastic process (s.p.) rather than a classical function. ⇓ The main goals include to compute: The solution s.p.: p ( t ) = p ( t ; ω ), ω ∈ Ω. The mean function: E [ p ( t )]. The variance function: V [ p ( t )]. M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 9

  10. To deal with RDE’s, L p (Ω)-calculus has demonstrate to be a powerful tool. p = 2 ⇒ mean square (m.s.) calculus � L 2 (Ω) = { X : Ω → R , 2-r.v. } ⇒ (L 2 (Ω) , �·� 2 ) Banach space X 2 �� 1 / 2 < + ∞ � � � X � 2 = E (Ω , F , P ) probability space X : Ω → R is a (continuous absolutely) real random variable (r.v.) F is a distribution function (d.f.); f is a probability density function (p.d.f.) of X � � � X 2 � Ω x 2 d F ( ω ) = R x 2 f ( x ) d x < + ∞ X 2-r.v. ⇔ E = − ( E [ X ]) 2 < + ∞ � X 2 � X 2-r.v. ⇒ V [ X ] = E Examples M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 10

  11. mean square (m.s.) convergence of { X n : n ≥ 0 } ∈ L 2 (Ω) � ( X n − X ) 2 � X n m.s. n → ∞ X ⇔ ( � X n − X � 2 ) 2 = E − − − → − n → ∞ 0 − − → Some reasons to select mean square convergence � E [ Z n ] − − − → E [ Z ] , Z n m.s. n → ∞ − n → ∞ Z ⇒ − − → V [ Z n ] − − − → V [ Z ] . n → ∞ ⇓ N ∑ X n t n X N ( t ) = n =0 ⇓ � E [ X N ( t )] − − − → E [ X ( t )] N → ∞ t ∈ T fixed , Z N = X N ( t ) ⇒ V [ X N ( t )] − − − → V [ X ( t )] N → ∞ M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 11

  12. However, it would be more desirable to determine the first probability density function (1-p.d.f.), f 1 ( p , t ), associated to the solution s.p. p ( t ) since from it one can compute, as merely particular cases, the mean and variance functions: � ∞ µ p ( t ) = E [ p ( t )] = − ∞ p f 1 ( p , t ) d p , � ∞ − ∞ p 2 f 1 ( p , t ) d p − ( µ p ( t )) 2 . σ 2 p ( t ) = V [ p ( t )] = But in addition, from it one can also compute higher statistical moments: � ∞ − ∞ p k f 1 ( p , t ) d p , E [( p ( t )) k ] = k = 0 , 1 , 2 ,..., and significant information such as the probability of the solution lies within a set of interest � b P [ a ≤ p ( t ) ≤ b ] = a f 1 ( p , t ) d p . This improves the computation of rough bounds like P [ | p ( t ) − µ p ( t ) | ≥ λ ] ≤ ( σ p ( t )) 2 , λ 2 usually used in practice. M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 12

  13. The general random linear differential equation Motivated by the previous presentation, in the following we focus on determining the 1-p.d.f., f Z ( z , t ), of the solution s.p. Z ( t ) to the general linear random initial value problem (i.v.p.): � ˙ Z ( t ) = AZ ( t )+ B , t > t 0 , Z ( t 0 ) = Z 0 , where the data Z 0 , B and A are assumed to be absolutely continuous random variables (r.v.’s) defined on a common probability space (Ω , F , P ), whose domains are assumed to be: D Z 0 = { z 0 = Z 0 ( ω ) , ω ∈ Ω : z 0 , 1 ≤ z 0 ≤ z 0 , 2 } , D B = { b = B ( ω ) , ω ∈ Ω : b 1 ≤ b ≤ b 2 } , D A = { a = A ( ω ) , ω ∈ Ω : a 1 ≤ a ≤ a 2 } . As we shall see later, the unifying element to conduct our study is the Random Variable Transformation (R.V.T.) method . M´ etodos Computacionales Estoc´ asticos en Epidemiolog´ ıa J.C. Cort´ es 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend