comprehensive in situ constraints on lpo fabric of fast
play

Comprehensive in situ constraints on LPO fabric of fast-spreading - PowerPoint PPT Presentation

DI11A-02 Comprehensive in situ constraints on LPO fabric of fast-spreading oceanic lithosphere from seismic anisotropy Joshua B. Russell 1 , Hannah F. Mark 2,3 , James B. Gaherty 1 , Daniel Lizarralde 2 , Pei-Ying (Patty) Lin 4 , John A. Collins 2


  1. DI11A-02 Comprehensive in situ constraints on LPO fabric of fast-spreading oceanic lithosphere from seismic anisotropy Joshua B. Russell 1 , Hannah F. Mark 2,3 , James B. Gaherty 1 , Daniel Lizarralde 2 , Pei-Ying (Patty) Lin 4 , John A. Collins 2 , Greg Hirth 5 , Rob L. Evans 2 1 Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA 2 Woods Hole Oceanographic Institution, Woods Hole, MA, USA 3 MIT/WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, MA, USA 4 Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan 5 Geological Sciences Department, Brown University, Providence, Rhode Island, USA

  2. DI11A-02 Motivation Geodynamic models simulate LPO fabric formation and evolution at mid-ocean ridge Observations: ▸ Hand-sample peridotite fabrics -3 –10 2 m length scale ▸ 10 ▸ Seismic anisotropy observations 3 –10 7 m length scale ▸ 10 Blackman et al., 2017 GJI Karato et al., 2008 Annu. Rev. 2

  3. DI11A-02 Motivation Geodynamic models simulate LPO fabric formation and evolution at mid-ocean ridge Observations: x3’ ▸ Hand-sample peridotite fabrics x1’ -3 –10 2 m length scale [100] ▸ 10 x2’ ▸ Seismic anisotropy observations Michibayashi et al., 2016 EPSL 3 –10 7 m length scale ▸ 10 Blackman et al., 2017 GJI Karato et al., 2008 Annu. Rev. 3

  4. DI11A-02 Motivation Geodynamic models simulate LPO fabric formation and evolution at mid-ocean ridge Observations: x3’ ▸ Hand-sample peridotite fabrics x1’ -3 –10 2 m length scale [100] ▸ 10 x2’ ▸ Seismic anisotropy observations Michibayashi et al., 2016 EPSL 3 –10 7 m length scale ▸ 10 Blackman et al., 2017 GJI Eddy et al., 2018 GJI Karato et al., 2008 Annu. Rev. 4

  5. DI11A-02 Motivation Geodynamic models simulate LPO fabric formation and evolution at mid-ocean ridge Observations: x3’ ▸ Hand-sample peridotite fabrics x1’ -3 –10 2 m length scale [100] ▸ 10 x2’ ▸ Seismic anisotropy observations Michibayashi et al., 2016 EPSL 3 –10 7 m length scale ▸ 10 Blackman et al., 2017 GJI NoMelt (~70 Ma) 6 0 20°N 400 km 10°N Depth (m) 1000 600 km 90 −1000 80 100 −3000 110 50 −5000 70 60 −7000 Karato et al., 2008 Annu. Rev. 5 0° 160°W 150°W 140°W

  6. DI11A-02 Olivine LPO fabric types LPO fabric development depends on stress , H 2 O content , and temperature Fast Slow Intermediate Slip systems a b c [100] [010] [001] A-type (010)[100] [100] [010] [001] D-type (0kl)[100] [100] [010] [001] E-type (001)[100] After Skemer et al., 2012 G3 6 Karato et al., 2008 Annu. Rev. ; Jung et al., 2006

  7. 2θ 2θ 2θ 2θ 2θ 2θ 2θ 2θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ 2θ DI11A-02 NoMelt anisotropy observations Love 2 θ & 4 θ (5–7.5 s) 2θ 2θ 2θ 2θ + 4θ 2θ 2θ 2θ 2θ Surface Waves: Rayleigh 2 θ (5–150 s) fossil 7.5 s spreading 2 1 c/c (%) Love = + 4θ 4θ 4θ 2θ + 4θ 2θ + 4θ b) 2θ 4θ 4θ 4θ 4θ 0 7.5 s -1 -2 -100 0 100 -100 -100 0 0 100 100 -100 0 100 Azimuth (º) Azimuth (º) Azimuth (º) Azimuth (º) Azimuth (º) 2θ 2θ 4θ 4θ 4θ 7 Russell et al. in review

  8. 2θ 2θ 2θ 2θ 2θ 2θ 2θ 2θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ 2θ DI11A-02 NoMelt anisotropy observations Love 2 θ & 4 θ (5–7.5 s) 2θ 2θ 2θ 2θ + 4θ 2θ 2θ 2θ 2θ Surface Waves: Rayleigh 2 θ (5–150 s) fossil 7.5 s spreading 2 1 c/c (%) Love = + 4θ 4θ 4θ 2θ + 4θ 2θ + 4θ b) 2θ 4θ 4θ 4θ 4θ 0 7.5 s -1 -2 -100 0 100 -100 -100 0 0 100 100 -100 0 100 Azimuth (º) Azimuth (º) Azimuth (º) Azimuth (º) Azimuth (º) 7.5 s 4 2θ 2θ 4θ 2 c/c (%) Shear Parameters Rayleigh 2θ a) 2θ 2θ 0 7.5 s G : 2 θ variation of V SV -2 E : 4 θ variation of V SH -4 -100 0 100 -100 0 100 Azimuth (º) 4θ 4θ 8 Russell et al. in review 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ 2θ 2θ 4θ 4θ 4θ

  9. 2θ 2θ 2θ 2θ 2θ 2θ 2θ 2θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ 2θ DI11A-02 NoMelt anisotropy observations Love 2 θ & 4 θ (5–7.5 s) 2θ 2θ 2θ 2θ + 4θ 2θ 2θ 2θ 2θ Surface Waves: Pn anisotropy Rayleigh 2 θ (5–150 s) fossil 7.5 s spreading 2 1 c/c (%) Love = + 4θ 4θ 4θ 2θ + 4θ 2θ + 4θ b) 2θ 4θ 4θ 4θ 4θ 0 7.5 s -1 -2 -100 0 100 -100 -100 0 0 100 100 -100 0 100 Azimuth (º) Azimuth (º) Azimuth (º) Azimuth (º) Azimuth (º) 7.5 s 4 2θ 2θ 4θ 2 c/c (%) Shear Parameters Rayleigh 2θ a) 2θ 2θ 0 7.5 s G : 2 θ variation of V SV Compressional Parameters -2 E : 4 θ variation of V SH B : 2 θ variation of V P -4 -100 0 100 -100 0 100 Azimuth (º) 4θ 4θ 9 Russell et al. in review Mark et al. in review 2θ + 4θ 2θ + 4θ 2θ + 4θ 2θ 2θ 2θ 4θ 4θ 4θ

  10. DI11A-02 Constraining the elastic tensor (C ij ) 1   A + B c + E c A − 2 N − E c F + H c 2 B s + E s 0 0 13 elastic parameters required   to constrain 13 elements of C ij   1 A − B c + E c F − H c 2 B s − E s 0 0   ·       C H s 0 0   · ·   C ij =     L − G c G s 0   · · ·       L + G c 0   · · · ·     N − E c · · · · · Azimuthal Anisotropy: ρ V qP ( θ ) 2 = A + B c cos(2 θ ) + B s sin(2 θ ) + E c cos(4 θ ) + E s sin(4 θ ) ρ V qSV ( θ ) 2 = L + G c cos(2 θ ) + G s sin(2 θ ) ρ V qSH ( θ ) 2 N − E c cos(4 θ ) − E s sin(4 θ ) = 10

  11. DI11A-02 Constraining the elastic tensor (C ij ) 1   A + B c + E c A − 2 N − E c F + H c 2 B s + E s 0 0 13 elastic parameters required   to constrain 13 elements of C ij   1 A − B c + E c F − H c 2 B s − E s 0 0   ·       C H s 0 0   · ·   C ij =   Rayleigh waves (2 θ )   L − G c G s 0   · · ·   ▸ L , G , B, H     L + G c 0 (V SV )   · · · ·     Love waves (2 θ , 4 θ ) N − E c · · · · · 9 terms ▸ N , E , G (V SH ) 1   A + B c + E c A − 2 N − E c F + H c 2 B s + E s 0 0   Pn (2 θ , 4 θ )   1 A − B c + E c F − H c 2 B s − E s 0 0   ·   ▸ A , B , E     C H s 0 0 (V PH )   · ·   C ij =     L − G c G s 0 Scaling relations   · · ·     ▸ C, H, F 4 terms   L + G c 0   · · · · (V PV )     ▸ A, B below 7 km N − E c · · · · · 11

  12. DI11A-02 Vs, ξ , G, B, H, E, Elastic model Ψ G , Ψ B , Ψ H , Ψ E Pn-constraints Isotropic Radial Anisotropy Azimuthal anisotropy on E and B FSD FSD + 45 ° 0 0 0 0 crust H E G B V SH > V SV 5 5 5 5 V SH > V SV 10 10 10 10 15 15 15 15 20 20 20 20 25 25 25 25 30 30 30 30 35 35 35 35 50 50 50 50 Depth (km) 100 100 100 100 150 150 150 150 200 200 200 200 APM G/L 250 250 250 250 NF89 (52-110 My) B/A Pa5 H/F NoMelt E/N 300 300 300 300 3 3.5 4 4.5 5 0.95 1 1.05 1.1 1.15 0 2 4 6 8 60 90 120 150 V S (km/s) Strength (%) Azimuth ( ° ) ξ = (V SH / V SV ) 2 12

  13. DI11A-02 Vs, ξ , G, B, H, E, Elastic model Ψ G , Ψ B , Ψ H , Ψ E Pn-constraints Isotropic Isotropic Radial Anisotropy Radial Anisotropy Azimuthal anisotropy Azimuthal anisotropy on E and B FSD FSD + 45 ° 0 0 0 0 crust H H E E G G B B Moho to V SH >V SV 5 5 5 5 35km depth V SH > V SV 10 10 10 10 15 15 15 15 20 20 20 20 25 25 25 25 30 30 30 30 35 35 35 35 50 50 50 50 Depth (km) 100 100 100 100 150 150 150 150 200 200 200 200 APM G/L 250 250 250 250 NF89 (52-110 My) B/A Pa5 H/F NoMelt E/N 300 300 300 300 3 3.5 4 4.5 5 0.95 1 1.05 1.1 1.15 0 2 4 6 8 60 90 120 150 V S (km/s) Strength (%) Azimuth ( ° ) ξ = (V SH / V SV ) 2 13

  14. DI11A-02 Comparison to petrofabrics NoMelt NoMelt NoMelt (Moho to 35 km) V P (km/s) 5 BIM98 (fast-spreading) Fast-shear polarisation 9 5 BIM98 (fast-spreading) PN78 (Mesozoic Average) Anisotropy PN78 (Harzburgite D-type) V qP (%) 8.9 x3’ 4 V P 8.8 0 3 8.7 x1’ 2 [100] 8.6 x2’ -5 1 4 8.5 Anisotropy = 7.6% Anisotropy V qSV (%) 2 V SV 0 -2 Azimuthal Anisotropy: -4 Anisotropy 2 V qSH (%) ρ V qP ( θ ) 2 A + B c cos(2 θ ) + B s sin(2 θ ) + E c cos(4 θ ) + E s sin(4 θ ) = V SH 0 ρ V qSV ( θ ) 2 -2 = L + G c cos(2 θ ) + G s sin(2 θ ) 1.2 ( V qSH / V qSV ) 2 Anisotropy (V SH / V SV ) 2 ρ V qSH ( θ ) 2 = N − E c cos(4 θ ) − E s sin(4 θ ) Radial 1.1 1 0.9 0 50 100 150 200 250 300 350 Azimuth in x' 1 -x' 2 plane ( ° ) Azimuth in horizontal plane (º) 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend