compositional z
play

Compositional Z Confluence for Permutative Conversion Koji Nakazawa - PowerPoint PPT Presentation

Compositional Z Confluence for Permutative Conversion Koji Nakazawa (Nagoya U) joint work with Ken-etsu Fujita (Gunma U) Workshop on Mathematical Logic and its Application 2016.9 @ Kyoto } } } } Confluence M ! ! M 1 M 2 ! ! N } }


  1. Compositional Z Confluence for Permutative Conversion Koji Nakazawa (Nagoya U) joint work with Ken-etsu Fujita (Gunma U) Workshop on Mathematical Logic and its Application 2016.9 @ Kyoto

  2. } } } } Confluence M ! ! M 1 M 2 ! ! ∃ N

  3. } } } } Confluence M Uniqueness of result of computation ! ! M 1 M 2 ! ! ∃ N

  4. } } } } Confluence M Uniqueness of result of computation ! ! M 1 M 2 Consistency of ! ! equational theory ∃ N

  5. This talk • Brief history of confluence of λ -calculus • parallel reduction and Z theorem • Compositional Z: a new confluence proof • simpler proof of λ + permutation rules • Z property for Church-Rosser theorem • quantitative analysis

  6. History of Confluence of λ

  7. λ β • Terms M , N ::= x | λ x . M | MN • Reduction rules ( λ x . M ) N M [ x := N ] → β

  8. History of Confluence of λ β • Church and Rosser (1936) “ Some Properties of Conversion ” • residuals of redexes • Tait and Martin-Löf (19??) • parallel reduction • Takahashi (1995) “ Parallel Reduction in λ -Calculus ” • maximum parallel reduction • Dehornoy and van Oostrom (2008) • Z theorem

  9. � � Z theorem [Dehornoy&van Oostrom 2008] If we find a mapping ( · ) * s.t. � N M � � N ∗ M ∗ then the reduction system is confluent

  10. �� � � �� � �� � N M Z theorem [Dehornoy&van Oostrom 2008] Z theorem � � N ∗ M ∗ � M 2 � M 3 � M 4 M 1 � · · · � � M ∗ � � M ∗ � � M ∗ � � · · · N 1 2 3

  11. �� � � �� � �� � N M Z theorem [Dehornoy&van Oostrom 2008] Z theorem � � N ∗ M ∗ � M 2 � M 3 � M 4 M 1 � · · · � � M ∗ � � M ∗ � � M ∗ � � · · · N 1 2 3

  12. �� � � �� � �� � N M Z theorem [Dehornoy&van Oostrom 2008] Z theorem � � N ∗ M ∗ � M 2 � M 3 � M 4 M 1 � · · · � � M ∗ � � M ∗ � � M ∗ � � · · · N 1 2 3

  13. �� � � �� � �� � N M Z theorem [Dehornoy&van Oostrom 2008] Z theorem � � N ∗ M ∗ � M 2 � M 3 � M 4 M 1 � · · · � � M ∗ � � M ∗ � � M ∗ � � · · · N 1 2 3

  14. �� � � �� � �� � N M Z theorem [Dehornoy&van Oostrom 2008] Z theorem � � N ∗ M ∗ � M 2 � M 3 � M 4 M 1 � · · · � � M ∗ � � M ∗ � � M ∗ � � · · · N 1 2 3

  15. �� � � �� � �� � N M Z theorem [Dehornoy&van Oostrom 2008] Z theorem � � N ∗ M ∗ � M 2 � M 3 � M 4 M 1 � · · · � � M ∗ � � M ∗ � � M ∗ � � · · · N 1 2 3

  16. Confluence of λ β by Z

  17. Confluence of λ β by Z • Takahashi's maximum parallel reduction is Z x ∗ = x ( λ x . M ) ∗ = λ x . M ∗ (( λ x . M ) N ) ∗ = M ∗ [ x := N ∗ ] ( MN ) ∗ = M ∗ N ∗ (M is not abst.)

  18. Confluence of λ β by Z • Takahashi's maximum parallel reduction is Z x ∗ = x ( λ x . M ) ∗ = λ x . M ∗ (( λ x . M ) N ) ∗ = M ∗ [ x := N ∗ ] ( MN ) ∗ = M ∗ N ∗ (M is not abst.) • Key lemmas M → ∗ M ∗ (i) M ∗ [ x := N ∗ ] → ∗ ( M [ x := N ]) ∗ (ii)

  19. � � � � � Confluence of λ β by Z • Proof of the base case ( λ x . M ) N M [ x := N ] � � ( i ) � � ( M [ x := N ]) ∗ M ∗ [ x := N ∗ ] ( ii ) • Key lemmas M → ∗ M ∗ (i) M ∗ [ x := N ∗ ] → ∗ ( M [ x := N ]) ∗ (ii)

  20. � � � � � Confluence of λ β by Z • Proof of the base case ( λ x . M ) N M [ x := N ] � � ( i ) � � ( M [ x := N ]) ∗ M ∗ [ x := N ∗ ] ( ii ) • Key lemmas M → ∗ M ∗ (i) M ∗ [ x := N ∗ ] → ∗ ( M [ x := N ]) ∗ (ii)

  21. � � � � � Confluence of λ β by Z • Proof of the base case ( λ x . M ) N M [ x := N ] � � ( i ) � � ( M [ x := N ]) ∗ M ∗ [ x := N ∗ ] ( ii ) • Key lemmas M → ∗ M ∗ (i) M ∗ [ x := N ∗ ] → ∗ ( M [ x := N ]) ∗ (ii)

  22. Z for Permutative Conversion

  23. Permutative conversion • for natural deduction with ∨ and ∃ [Prawitz 1965] • exchanges order of elimination rules • for normal proofs to have good properties 
 such as the subformula property • makes confluence proofs much harder 
 [Ando 2003]

  24. Exchanging E-Rules . . . . . . . . . . P . Q 1 . Q 2 . . Γ � A 1 � A 2 Γ , A 1 � B � C Γ , A 2 � B � C . . R ( E ∨ ) Γ � B � C Γ � B ( E → ) Γ � C π . . . . . . . . . . . . . Q 1 . R . Q 2 . R . . . Γ , A 1 � B � C Γ � B Γ , A 2 � B � C Γ � B . P ( E → ) ( E → ) Γ � A 1 � A 2 Γ , A 1 � C Γ , A 1 � C ( E ∨ ) Γ � C

  25. (case P with x 1 → Q 1 | x 2 → Q 2 )R Exchanging E-Rules = P[x 1 .Q 1 ,x 2 .Q 2 ]R . . . . . . . . . . P . Q 1 . Q 2 . . Γ � A 1 � A 2 Γ , A 1 � B � C Γ , A 2 � B � C . . R ( E ∨ ) Γ � B � C Γ � B ( E → ) Γ � C π π . . . . . . . . . . . . . Q 1 . R . Q 2 . R . . . Γ , A 1 � B � C Γ � B Γ , A 2 � B � C Γ � B . P ( E → ) ( E → ) Γ � A 1 � A 2 Γ , A 1 � C Γ , A 1 � C ( E ∨ ) Γ � C P[x 1 .Q 1 R, x 2 .Q 2 R]

  26. λ βπ • Terms and eliminators M , N ::= x | λ x . M | ι 1 M | ι 2 M | Me e ::= M | [ x 1 . N 1 , x 2 . N 2 ] • Reduction rules ( λ x . M ) N M [ x := N ] → β ( ι i M )[ x 1 . N 1 , x 2 . N 2 ] N i [ x i := M ] → β M [ x 1 . N 1 , x 2 . N 2 ] e M [ x 1 . N 1 e , x 2 . N 2 e ] → π

  27. λ βπ uniform representation of elimination for → and ∨ • Terms and eliminators M , N ::= x | λ x . M | ι 1 M | ι 2 M | Me e ::= M | [ x 1 . N 1 , x 2 . N 2 ] • Reduction rules ( λ x . M ) N M [ x := N ] → β ( ι i M )[ x 1 . N 1 , x 2 . N 2 ] N i [ x i := M ] → β M [ x 1 . N 1 , x 2 . N 2 ] e M [ x 1 . N 1 e , x 2 . N 2 e ] → π

  28. λ βπ uniform representation of elimination for → and ∨ • Terms and eliminators M , N ::= x | λ x . M | ι 1 M | ι 2 M | Me e ::= M | [ x 1 . N 1 , x 2 . N 2 ] • Reduction rules ( λ x . M ) N M [ x := N ] → β ( ι i M )[ x 1 . N 1 , x 2 . N 2 ] N i [ x i := M ] → β M [ x 1 . N 1 , x 2 . N 2 ] e M [ x 1 . N 1 e , x 2 . N 2 e ] → π left associative permutative conversion (M[x 1 .N 1 ,x 2 .N 2 ])e

  29. λ βπ , for simplicity • Terms and eliminators M , N ::= x | λ x . M | ι M | Me e ::= M | [ x . N ] • Reduction rules ( λ x . M ) N M [ x := N ] → β ( ι M )[ x . N ] N [ x := M ] → β M [ x . N ] e M [ x . Ne ] → π

  30. Where are difficulties? • Parallel reduction for π -reduction • Maximum complete development for 
 the combination of β - and π -reductions

  31. � � � � Parallel reduction for π ? x [ y . y ][ z . z ][ w . w ] � � � ������������� � � � π π � � � � � � � � x [ y . y [ z . z ]][ w . w ] x [ y . y ][ z . z [ w . w ]] π x [ y . y [ z . z ][ w . w ]] π π x [ y . y [ z . z [ w . w ]]]

  32. � � � � Parallel reduction for π ? x [ y . y ][ z . z ][ w . w ] � � � ������������� � � � π π � � � � � � � � x [ y . y [ z . z ]][ w . w ] x [ y . y ][ z . z [ w . w ]] π x [ y . y [ z . z ][ w . w ]] π π x [ y . y [ z . z [ w . w ]]]

  33. � � � � Parallel reduction for π ? x [ y . y ][ z . z ][ w . w ] � � � ������������� � � � π π � � � � � � � � x [ y . y [ z . z ]][ w . w ] x [ y . y ][ z . z [ w . w ]] these steps must be considered as one-step parallel red. π x [ y . y [ z . z ][ w . w ]] π π x [ y . y [ z . z [ w . w ]]]

  34. � � � � Parallel reduction for π ? x [ y . y ][ z . z ][ w . w ] � � � ������������� � � � π π � � � � � � � � x [ y . y [ z . z ]][ w . w ] x [ y . y ][ z . z [ w . w ]] these steps must be considered as one-step parallel red. π x [ y . y [ z . z ][ w . w ]] π We can avoid parallel reduction by Z π x [ y . y [ z . z [ w . w ]]]

  35. � � � � � � � N M Z for π ? � � N ∗ M ∗ x [ y . y ][ z . z ][ w . w ] � � � ������������� � � � π π � � � � � � � � x [ y . y [ z . z ]][ w . w ] x [ y . y ][ z . z [ w . w ]] π x [ y . y [ z . z ][ w . w ]] π π x [ y . y [ z . z [ w . w ]]]

  36. � � � � � � � N M Z for π ? � � N ∗ M ∗ x [ y . y ][ z . z ][ w . w ] � � � ������������� � � � π π � � � � � � � � x [ y . y [ z . z ]][ w . w ] x [ y . y ][ z . z [ w . w ]] we have to do π π completely x [ y . y [ z . z ][ w . w ]] π π x [ y . y [ z . z [ w . w ]]]

  37. Z for βπ ? • A naïve definition x ∗ = x ( λ x . M ) ∗ = λ x . M ∗ ( ι M ) ∗ = ι M ∗ (( λ x . M ) N ) ∗ = M ∗ [ x := N ∗ ] (( ι M )[ x . N ]) ∗ = N ∗ [ x := M ∗ ] ( Me ) ∗ = M ∗ @ e ∗ (otherwise) ( M [ x . N ])@ e = M [ x . N @ e ] M @ e = Me (otherwise)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend