complex generalized integral means spectrum of whole
play

Complex Generalized Integral Means Spectrum of Whole-Plane SLE - PowerPoint PPT Presentation

Complex Generalized Integral Means Spectrum of Whole-Plane SLE Bertrand Duplantier , Xuan Hieu Ho Thanh Binh Le , Michel Zinsmeister Dmitry Beliaev , B. D. , M. Z. Paris-Saclay/ Orl eans/ Quy Nhon/


  1. Complex Generalized Integral Means Spectrum of Whole-Plane SLE ⋆ Bertrand Duplantier † , Xuan Hieu Ho ‡ Thanh Binh Le ∗ , Michel Zinsmeister ‡ ⋆⋆ Dmitry Beliaev ∗∗ , B. D. , M. Z. † Paris-Saclay/ ‡ Orl´ eans/ ∗ Quy Nhon/ ∗∗ Oxford ⋆ Commun. Math. Phys. 359 823-868 (2018) ⋆⋆ Commun. Math. Phys. 353 119-133 (2017) Random Conformal Geometry and Related Fields KIAS, Seoul, Korea June 18 – 22, 2018

  2. Whole-Plane Schramm-Loewner Evolution f t t � ( ) t � ( )= f t ( ) � ( ) t 0 1 � ( )= 0 f 1 ( ) z t = f � 1 0 t ( ) 8 f t 0 ( )= 0 ◮ ◮ λ ( t ) − z , λ ( t ) = exp( i √ κ B t ) ∂ t f t ( z ) = z ∂ ∂ ∂ z f t ( z ) λ ( t ) + z z ∈ D , e t z f t ( e − t z ) → z , t → + ∞ ; κ = 0 , f t ( z ) = ( Koebe ) (1 − z ) 2 ◮ f [ − 1] ( z ) := 1 / f (1 / z ) is the bounded exterior version from C \ D to the slit plane [Beliaev & Smirnov, Lawler].

  3. Integral Means Spectrum ◮ Consider an injective Riemann map Φ ∈ S , i.e., Φ : D → C , Φ(0) = 0 , Φ ′ (0) = 1 . ◮ The integral means of Φ are � 2 π | Φ ′ ( re i θ ) | p d θ, 0 < r < 1 , p ∈ R ; I ( r , p , Φ) := 0 ◮ Φ random : � 2 π | Φ ′ ( re i θ ) | p � � Expectation: E I ( r , p , Φ) := E d θ. 0 ◮ One then defines log( I ( r , p , Φ)) β Φ ( p ) := lim sup ; 1 log( 1 − r ) r → 1 − ◮ If the limit exists, 1 r → 1 − I ( r , p , Φ) ≍ (1 − r ) β Φ ( p ) .

  4. Integral means spectrum & harmonic measure ◮ The integral means spectrum is related to the multifractal spectrum of the harmonic measure ω on the boundary of the image domain. ◮ Define, for α ≥ 1 / 2, E α as being the set of points z on the boundary where ω ( B ( z , r )) ∼ r α , as r → 0. ◮ The multifractal spectrum of ω is the function f ( α ) = D Hausdorff ( E α ). ◮ One goes from the integral means spectrum β to f by a Legendre transform , 1 � β ( p ) − p + 1 + 1 � α f ( α ) = inf , α p p � 1 � β ( p ) = sup α ( f ( α ) − p ) + p − 1 . α

  5. Universal Integral Means Spectrum ◮ B ( p ) = sup { β Φ ( p ) , Φ ∈ S} . ◮ B bd ( p ) = sup { β Φ ( p ) , Φ ∈ S , Φ bounded } . ◮ Theorem (Makarov): B ( p ) = max { B bd ( p ) , 3 p − 1 } .

  6. Generalized Integral Means Spectrum ◮ Consider a ( random ) injective Riemann map Φ ∈ S , i.e., Φ : D → C , Φ(0) = 0 , Φ ′ (0) = 1 . ◮ For ( p , q ) ∈ R 2 , define the generalized integral means � 2 π | Φ ′ ( re i θ ) | p I ( r , p , q , Φ) := | Φ( re i θ ) | q d θ, 0 < r < 1; 0 � 2 π E | Φ ′ ( re i θ ) | p ◮ Expected: E I ( r , p , q , Φ) := | Φ( re i θ ) | q d θ, 0 < r < 1 . 0 ◮ Define log( I ( r , p , q , Φ)) β Φ ( p , q ) := lim sup ; 1 log( 1 − r ) r → 1 − ◮ If the limit exists, 1 r → 1 − I ( r , p , q , Φ) ≍ (1 − r ) β Φ ( p , q ) .

  7. Generalized Integral Means Spectrum ◮ Unified treatment of the bounded and the unbounded cases. ◮ Φ ∈ S ⇒ Ψ = 1 Φ is bounded, ◮ | Ψ ′ | p = | Φ ′ | p | Φ | 2 p . ◮ m -fold transform of f ∈ S : f [ m ] ( z ) := � f ( z m ) , m ∈ Z + , m holomorphic branch with derivative 1 at 0. For m ∈ Z − and z ∈ D − := C \ D , f [ m ] ( z ) := 1 / f [ − m ] (1 / z ). For m < 0, f [ m ] ( D − ) has bounded boundary. For m = − 1, f [ − 1] ( z ) = 1 / f (1 / z ) , is the bounded exterior whole-plane of Beliaev & Smirnov. ◮ | f ′ ( z m ) | p | ( f [ m ] ) ′ ( z ) | p = | z | p ( m − 1) m ) . | f ( z m ) | p (1 − 1

  8. Generalized Integral Means Spectrum ◮ One finds various standard spectra in the ( p , q ) plane: ◮ The standard integral means spectrum on the line q = 0, ◮ The bounded one on the line q = 2 p , 1 ◮ The spectrum for the m - fold f [ m ] ( z ) = ( f ( z m )) m , m ∈ Z + , β [ m ] ( p ) = β [1] ( p , q m ) , q m := p (1 − 1 / m ); ◮ The standard spectrum for the m -fold for m ∈ Z − .

  9. Universal Generalized Integral Means Spectrum ◮ One can similarly define a universal generalized integral means spectrum. ◮ Theorem (Astala, D., Zinsmeister): B ( p , q ) = max { B bd ( p ) , 3 p − 2 q − 1 } . q p � 1 p � � 1 2 p /4 p p q 3 � 2 � 1

  10. Beliaev-Smirnov Generalized PDE ◮ Let f be a whole-plane (inner) SLE κ , z ∈ D , ( p . q ) ∈ R 2 � z � q � � q � � � � z 2 p f ′ ( z ) | f ′ ( z ) | p � � F ( z ) := E , G ( z , ¯ z ) := E . 2 � � f ( z ) f ( z ) � � ◮ Using the SLE equation and Itˆ o calculus, one derives a differential equation satisfied by F , � − κ 2( z ∂ z ) 2 − 1 + z P ( ∂ )[ F ( z )] = 1 − z z ∂ z � p q − (1 − z ) 2 + 1 − z + p − q F ( z ) = 0 , ◮ and a partial differential equation satisfied by G , � − κ z ) 2 − 1 + z 1 − z z ∂ z − 1 + ¯ z P ( D )[ G ( z , ¯ z )] = 2( z ∂ z − ¯ z ∂ ¯ z ¯ z ∂ ¯ z 1 − ¯ � p p q q − (1 − z ) 2 − z ) 2 + 1 − z + z + 2( p − q ) G ( z , ¯ z ) = 0 . (1 − ¯ 1 − ¯

  11. Integrable Probability ◮ Let f be a time 0 whole-plane (inner) SLE κ , and ( p , q ) ∈ R 2 , � z � q � � q � � � � z 2 p f ′ ( z ) | f ′ ( z ) | p � � F ( z ) := E , G ( z , ¯ z ) := E . 2 � � f ( z ) f ( z ) � � ◮ Integrable parabola with parameterization, p ( γ ) := (2 + κ 2) γ − κ 2 γ 2 , γ ∈ R , q ( γ ) := (3 + κ 2) γ − κγ 2 . ◮ Theorem [DHLZ ’18]: If p = p ( γ ) and q = q ( γ ), then z 2 ) = (1 − z 1 ) γ (1 − ¯ z 2 ) γ F ( z ) = (1 − z ) γ , G ( z 1 , ¯ . z 2 ) κγ 2 / 2 (1 − z 1 ¯

  12. q 2 p -0.5 0.5 1 1.5 2 p ( ) -2 � -4 -6 -8 Integrable parabola for κ ∈ { 2 , 4 , 6 } Other integrable parabolae.

  13. Generalized Integral Means Spectrum of Whole-Plane SLE ◮ The generalized spectrum is [D., Ho, Le & Zinsmeister ’18], β 1 ( p , q ; κ ) := 3 p − 2 q − 1 2 − 1 � 1 + 2 κ ( p − q ) . 2 ◮ Phase transition lines: green parabola & blue quartic q p ( ) � D’ D lin 0 0 III D 1 p � 0 ( ) P 0 p II p � tip ( ) IV � 1 p q , ( ) I Q 0

  14. SLE Standard Integral Means Spectrum ◮ As predicted in Lawler & Werner ’99, D. ’99, (BM), D.’00, and Hastings ’02, and proven in Beliaev & Smirnov ’05, and Beliaev, D. & Zinsmeister ’17, the average spectrum of SLE κ involves 3 phases: β tip ( p , κ ) = − p − 1 + 1 � � � (4 + κ ) 2 − 8 κ p 4 + κ − , 4 β 0 ( p , κ ) = − p + (4 + κ ) 2 − (4 + κ ) � (4 + κ ) 2 − 8 κ p , 4 κ 4 κ β lin ( p , κ ) = p − (4 + κ ) 2 . 16 κ ◮ a.s. β tip [Johansson Viklund & Lawler ’12] ◮ a.s. β 0 [Gwynne, Miller & Sun ’18] ◮ a.s. boundary spectrum [Alberts, Binder & Viklund ’16] [Schoug ’18]

  15. 8 , p 3 = 3(4 + κ ) 2 p 2 = − 1 − 3 κ 32 κ Average integral means spectrum for bounded whole-plane SLE.

  16. Unbounded Whole-plane SLE ◮ In this case, [D., Nguyen, Nguyen & Zinsmeister ’14] (see also [Loutsenko & Yermolayeva ’13]) have shown the existence of a phase transition at p 0 := (4+ κ ) 2 − 4 − 2 √ 2(4+ κ ) 2 +4 to 16 κ β 1 ( p , 0; κ ) := 3 p − 1 2 − 1 � 1 + 2 κ p . 2 (Related to SLE derivative exponents [Lawler, Schramm, Werner ’01] and ‘tip’ quantum gravity ones [D.’03].)

  17. Remarks ◮ This β 1 spectrum for the unbounded interior case is proven in a finite p -interval above the transition point p 0 . ◮ In the bounded exterior case, the original Beliaev-Smirnov proof has a gap for negative enough p , namely when p ≤ p 1 := − (4 + κ ) 2 (8 + κ ) , 128 a sub-/super solution to the PDE being no longer positive . ◮ This corresponds to a phase transition to a ‘second tip’ spectrum , that requires a new proof [Beliaev, D. & Zinsmeister ’17].

  18. Phase Diagram q p ( ) � D’ D lin 0 0 III D 1 p � 0 ( ) P 0 p II � tip p IV ( ) � 1 p q ( ) , I Q 0 ◮ ◮ Phase transition lines: green parabola & blue quartic ◮ β 1 ( p , q ; κ ) := 3 p − 2 q − 1 2 − 1 � 1 + 2 κ ( p − q ) . 2

  19. Bounded whole-plane SLE ◮ The Beliaev-Smirnov line q = 2 p does not intersect the green parabola part, and is asymptotically parallel to the blue quartic .

  20. Subjacent β 1 spectrum ◮ Zooming below Q 0 The bounded SLE line intersects the continuation of the green parabola at p 1 . For p < p 1 , the β 1 spectrum dominates the bulk one, β 0 , but not the tip one, β tip .

  21. β 1 ( p , 2 p ; κ ) := − p − 1 2 − 1 � 1 − 2 κ p . 2 ‘Second tip’ spectrum [Beliaev, D. & Zinsmeister ’17]

  22. Domain of Proof ◮ Domain where the form of the generalized integral means spectrum has been established: q D D’ 0 0 D 1 P 0 p P 2 P 3 D 2 Q 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend