complex fourth moment theorems
play

Complex Fourth Moment Theorems Simon Campese RTG 2131 opening - PowerPoint PPT Presentation

Complex Fourth Moment Theorems Simon Campese RTG 2131 opening workshop, November 27, 2015 Introduction n n Generic Fourth Moment Theorem: n d X n X 2 X 3 X 4 [ ] [ ] [ ] X P ( E [ X n ] , E , E , E ) 0


  1. Complex Fourth Moment Theorems Simon Campese RTG 2131 opening workshop, November 27, 2015

  2. Introduction n n Generic Fourth Moment Theorem: n d X n X 2 X 3 X 4 [ ] [ ] [ ] → X ∼ µ − ⇐ ⇒ P ( E [ X n ] , E , E , E ) → 0 • Nualart-Peccati (2005): X n = I p ( f n ) , µ ∼ N (0 , σ 2 ) , P = X 4 n − 3 • Peccati-Tudor (2005): Extension to multivariate case for µ ∼ N d (0 , Σ) • Nualart-Ortiz-Latorre (2008): New proof using Malliavin calculus • Nourdin-Peccati (2009): Quantitative FMT via Malliavin-Stein for µ ∼ N (0 , σ 2 ) and µ ∼ Gamma ( ν ) . • Nourdin-Peccati-Revéillac (2010): Quantitative FMT via Malliavin-Stein for µ ∼ N d (0 , Σ)

  3. Introduction • Ledoux (2012): new, pathbreaking proofs by spectral methods • Azmoodeh-C.-Poly (2014): FMT for chaotic eigenfunctions of generic Markov diffusion generators, µ ∼ N (0 , σ 2 ) , µ ∼ Gamma ( ν ) or µ ∼ Beta ( α, β ) • C.-Nourdin-Peccati-Poly (2015+): Multivariate extension for µ ∼ N d (0 , Σ) • In this talk: Extension to complex valued random variables and µ ∼ CN d (0 , Σ)

  4. Complex normal distribution p j E j q j • Z ∼ CN d (0 , Σ) if its density f is given by 1 − z T Σ − 1 z ( ) f ( z ) = π d | det Σ | exp • E [ ZZ T ] = Σ and E [ ZZ T ] = 0 [∏ ] • Completely characterized by its moments E j Z j Z • For Z ∼ CN 1 (0 , 1) : { p ! if p = q [ Z p Z q ] = 0 if p ̸ = q .

  5. Wirtinger calculus Wirtinger derivatives and variables when differentiating, for example: • ∂ z = 1 and ∂ z = 1 ( ) ( ) ∂ x − i ∂ y ∂ x + i ∂ y 2 2 • ∂ z and ∂ z satisfy product and chain rules • Heuristic: z and z can be treated as algebraically independent ∂ z z p z q = pz p − 1 z q ∂ z z p z q = qz p z q − 1

  6. Stein’s method for the complex normal distribution Lemma Looks nice, but associated Stein equation can not be solved in general. Z ∼ CN 1 (0 , 1) if, and only if, [ ] E [ ∂ z f ( Z )] − E Z f ( Z ) = 0 for suitable f : C → C .

  7. Stein’s method for the complex normal distribution Lemma has nice solution for suitable h . Z ∼ CN 1 (0 , 1) if, and only if, [ ] 2 E [ ∂ zz f ( Z )] − E Z ∂ z f ( Z ) − E [ Z ∂ z f ( Z )] = 0 for suitable f : C → C . For W ∼ CN 1 (0 , 1) , associated Stein equation 2 ∂ zz f ( z ) − z ∂ z f ( z ) − z ∂ z f ( z ) = h ( z ) − E [ h ( W )]

  8. Abstract setting • Symmetric diffusion Markov generator L acting on L 2 ( E , F , µ ) • Discrete spectrum S = {· · · < − λ 2 < − λ 1 < − λ 0 = 0 } • Spectral theorem: ∞ L 2 ( E , F , µ ) = ⊕ ker ( L + λ k Id ) k =0 • Eigenspaces closed under conjugation as L F = L F

  9. Carré du champ operator E d E • Carré du champ operator Γ : Γ( F , G ) = 1 ( L ( FG ) − F L G − G L F ) 2 ∫ ∫ L ( FG ) d µ = L (1) FG d µ = 0 • Integration by parts: ∫ ∫ Γ( F , G ) d µ = − F L G d µ • Diffusion property: ( ) ∑ Γ( ϕ ( F 1 , . . . , F d ) , G ) = ∂ z j ϕ ( F ) Γ( F j , G ) + ∂ z j ϕ ( F ) Γ( F j , G ) j =1

  10. Pseudo inverse of the generator E E E E E E • L − 1 pseudo-inverse of generator (compact) • Bears its name as ∫ L L − 1 F = F − F d µ • In particular: ∫ ∫ Γ( F , − L − 1 G ) d µ = F L L − 1 G d µ ∫ ∫ ∫ FG d µ − = F d µ G d µ

  11. Quantitative bound for the Wasserstein distance Theorem variable. Then it holds that E E Let Z ∼ CN 1 (0 , 1) and denote by F a centered smooth complex random √ ( 1 ∫ � 2 d µ � Γ( F , − L − 1 F � � d W ( F , Z ) ≤ 2 2 ) 1/2 ∫ ) 2 d µ Γ( F , − L − 1 F ) − 1 ( + .

  12. Quantitative bound for the Wasserstein distance Theorem vector. Then it holds that op E E Let Z ∼ C N d (0 , Σ) and denote by F a centered smooth complex random √ ( 1 ∫ � 2 2 ∥ Σ − 1 ∥ op ∥ Σ ∥ 1/2 � Γ( F , − L − 1 F ) � � d W ( F , Z ) ≤ HS d µ 2 ) 1/2 ∫ � 2 � Γ( F , − L − 1 F ) − Σ � � + HS d µ , where Γ( F , − L − 1 F ) = Γ( F j , − L − 1 F k ) ( ) 1 ≤ j , k ≤ d and ∥ A ∥ HS = tr ( A A T ) .

  13. Abstract Markov chaos are jointly chaotic, if ker and Definition ker jointly chaotic. ( ) ( ) • F ∈ ker and G ∈ ker L + λ p Id L + λ q Id p + q p + q ⊕ ⊕ ( ) ( ) FG ∈ L + λ j Id FG ∈ L + λ j Id . j =0 j =0 ( ) • F ∈ ker L + λ p Id is chaotic, if F is jointly chaotic with itself. • A vector of eigenfunctions is chaotic, if any two components are

  14. Key lemma Lemma For chaotic eigenfunctions F,G it holds that E E ∫ ∫ � 2 d µ ≤ � Γ( F , − L − 1 G ) FG Γ( F , − L − 1 G ) d µ � � Consequence of general principle from Azmoodeh-C.-Poly (2014).

  15. Quantitative Fourth Moment Theorem Theorem E For Z ∼ CN 1 (0 , 1) and chaotic eigenfunction F, it holds that √∫ ( 1 ) 2 | F | 4 − 2 | F | 2 + 1 d W ( F , Z ) ≤ d µ Similar bound for Z ∼ CN d (0 , Σ) and chaotic vector F involving E | F j F k | 2 d µ . ∫ ∫ E F j F k d µ and

  16. Quantitative Fourth Moment Theorem Corollary the following two assertions are equivalent: (i) F n d (ii) For Z ∼ CN 1 (0 , 1) and normalized sequence F n of chaotic eigenfunctions, − → Z E | F n | 4 d µ → 2 ∫

  17. Proof of moment bound E E E E By key lemma, diffusion property and integration by parts: E E Key lemma also implies that E E ∫ ∫ Γ( F , − L − 1 F ) 2 d µ ≤ FF Γ( F , − L − 1 F ) d µ = 1 (∫ ∫ ) F 2 Γ( F , − L − 1 F ) d µ Γ( F 2 F , − L − 1 F ) d µ − 2 = 1 ∫ | F | 4 d µ − 1 ∫ F 2 Γ( F , − L − 1 F ) d µ 2 2 ∫ ∫ F 2 Γ( F , − L − 1 F ) d µ. � 2 d µ ≤ � � Γ( F , − L − 1 F ) �

  18. Proof of moment bound Therefore, E E E ∫ ( 1 � 2 + ) 2 ) � Γ( F , − L − 1 F ) Γ( F , − L − 1 F ) − 1 � � ( d µ 2 ( 1 ) ∫ � 2 + Γ( F , − L − 1 F ) 2 − 2 | F | 2 + 1 � Γ( F , − L − 1 F ) � � = d µ 2 ( 1 ) ∫ 2 | F | 4 − 2 | F | 2 + 1 ≤ d µ

  19. Complex Peccati-Tudor Theorem F n F n d (ii) F n d (i) F n underlying generator, the following two assertions are equivalent: Theorem Proof: Adaptation of real version in C.-Nourdin-Peccati-Poly (2015+) n E Let Z ∼ CN d (0 , Σ) and ( F n ) be sequence of chaotic vectors satisfying F 2 [ ] [ ] → 0 and E → Σ . Under some technical conditions on − → Z jointly − → Z componentwise

  20. Complex Ornstein-Uhlenbeck generator eigenfunctions of the real OU-generator. • S = − N 0 , Γ( F , G ) = ⟨ DF , DG ⟩ H • Real and imaginary parts of any eigenfunction are themselves • However, eigenspaces have much richer algebraic structure: ⊕ ker ( L + k Id ) = H p , q p , q ∈ N 0 p + q = k with H p , q = H q , p .

  21. Complex Hermite Polynomials (Itô, 1952) First few: z z j j H p , q ( z ) = ( − 1) p + q e | z | 2 ( ∂ z ) p ( ∂ z ) q e −| z | 2 p ∧ q ( p )( q ) ∑ j ! ( − 1) j z p − j z q − j = j =0 1 | z | 2 − 1 z 2 z 2 z 3 z 2 z − 2 z z 2 z − 2 z z 3

  22. Orthonormal basis for H p , q • Let { Z ( h ): h ∈ H } be complex isonormal Gaussian process and ( e j ) orthonormal basis of H . • Orthonormal basis of H p , q is given by   ∞   √ ∏ m p ! m q ! H m p ( j ) , m q ( j ) ( Z ( e j )): ( m p , m q ) ∈ M p × M q   j =1 • In particular: Z ( e j ) p ∈ H p , 0 • Thus, H p , 0 is sub-algebra of Dirichlet domain induced by Γ

  23. Concluding remarks Peccati-Tudor Theorem have been proven by Chen-Liu (2014+) and Chen (2014+), respectively, by separating real and imaginary parts complexified Gamma and Beta distributions are not interesting as these are real valued) Applications: Marinucci and M. Rossi) product inequality; advances for complex unlinking conjecture (forthcoming paper with G. Poly) • For OU generator and d = 1 , a (non-quantitative) FMT and • Our method can also yield FMT for other target laws (usual • Quantitative CLT for spin random fields (joint project with D. • New proof and generalization of de Reyna’s complex Gaussian

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend