complex baseband representation
play

Complex Baseband Representation Saravanan Vijayakumaran - PowerPoint PPT Presentation

Complex Baseband Representation Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay July 23, 2013 1 / 19 Baseband Signals S ( f ) = 0 , | f | > W | S ( f ) | f W W 2


  1. Complex Baseband Representation Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay July 23, 2013 1 / 19

  2. Baseband Signals S ( f ) = 0 , | f | > W | S ( f ) | f − W W 2 / 19

  3. Passband Signals S ( f ) � = 0 , | f ± f c | ≤ W , f c > W > 0 . | S p ( f ) | f − f c − W − f c − f c + W f c − W f c f c + W 3 / 19

  4. Sampling Theorem Theorem If a signal s ( t ) is bandlimited to B, S ( f ) = 0 , | f | > B then a sufficient condition for exact reconstructability is a uniform sampling rate f s where f s > 2 B . Baseband Signals B = W Passband Signals B = f c + W (Can we do better?) 4 / 19

  5. Fourier Transform for Real Signals Im [ s ( t )] = 0 ⇒ S ( f ) = S ∗ ( − f ) (Conjugate Symmetry) ⇒ | S ( f ) | = | S ( − f ) | , arg ( S ( f )) = − arg ( S ( − f )) Re ( S ( f )) Im ( S ( f )) 1 1 − W W f − W W f -1 5 / 19

  6. Fourier Transform of a Real Passband Signal Re ( S p ( f )) − f c f c f Im ( S p ( f )) − f c f c f 6 / 19

  7. Positive Spectrum of a Real Passband Signal Re ( S + p ( f )) − f c f c f Im ( S + p ( f )) − f c f c f S + p ( f ) = S p ( f ) u ( f ) 7 / 19

  8. Complex Envelope of a Real Passband Signal Re ( S ( f )) f Im ( S ( f )) f √ √ 2 S + S ( f ) = p ( f + f c ) = 2 S p ( f + f c ) u ( f + f c ) 8 / 19

  9. Complex Envelope in Time Domain Frequency Domain Representation √ √ 2 S + S ( f ) = p ( f + f c ) = 2 S p ( f + f c ) u ( f + f c ) Time Domain Representation of Positive Spectrum S + p ( f ) = S p ( f ) u ( f ) s p ( t ) ⋆ F − 1 [ u ( f )] s + p ( t ) = Time Domain Representation of Frequency Domain Unit Step j 2 π f + 1 1 − ⇀ u ( t ) 2 δ ( f ) ↽ − − j 2 π t + 1 1 − ⇀ u ( f ) 2 δ ( − t ) ↽ − 2 π t + 1 j = 2 δ ( t ) 9 / 19

  10. Complex Envelope in Time Domain Time Domain Representation of Positive Spectrum � 1 � j s + p ( t ) = s p ( t ) ⋆ 2 δ ( t ) + 2 π t 1 2 [ s p ( t ) + j ˆ = s p ( t )] Time Domain Representation of Complex Envelope √ 1 − [ s p ( t ) + j ˆ 2 S p ( f ) u ( f ) ⇀ √ s p ( t )] ↽ − 2 √ 1 s p ( t )] e − j 2 π f c t − ⇀ √ [ s p ( t ) + j ˆ 2 S p ( f + f c ) u ( f + f c ) ↽ − 2 1 s p ( t )] e − j 2 π f c t − ⇀ [ s p ( t ) + j ˆ S ( f ) √ − ↽ 2 1 s p ( t )] e − j 2 π f c t [ s p ( t ) + j ˆ s ( t ) = √ 2 10 / 19

  11. Passband Signal in terms of Complex Envelope Complex Envelope s ( t ) = s c ( t ) + js s ( t ) s c ( t ) In-phase component s s ( t ) Quadrature component Time Domain Relationship � √ 2 s ( t ) e j 2 π f c t � s p ( t ) = Re � √ 2 { s c ( t ) + js s ( t ) } e j 2 π f c t � = Re √ √ = 2 s c ( t ) cos 2 π f c t − 2 s s ( t ) sin 2 π f c t Frequency Domain Relationship S p ( f ) = S ( f − f c ) + S ∗ ( − f − f c ) √ 2 11 / 19

  12. Upconversion √ √ s p ( t ) = 2 s c ( t ) cos 2 π f c t − 2 s s ( t ) sin 2 π f c t s c ( t ) × √ 2 cos 2 π f c t + s p ( t ) √ − 2 sin 2 π f c t s s ( t ) × 12 / 19

  13. Downconversion √ 2 s c ( t ) cos 2 2 π f c t − 2 s s ( t ) sin 2 π f c t cos 2 π f c t 2 s p ( t ) cos 2 π f c t = = s c ( t ) + s c ( t ) cos 4 π f c t − s s ( t ) sin 4 π f c t × s c ( t ) LPF √ 2 cos 2 π f c t s p ( t ) √ − 2 sin 2 π f c t × s s ( t ) LPF 13 / 19

  14. Inner Product and Energy Let s ( t ) and r ( t ) be signals. Definition (Inner Product) � ∞ � s , r � = s ( t ) r ∗ ( t ) dt −∞ Definition (Energy) � ∞ E s = � s � 2 = � s , s � = | s ( t ) | 2 dt −∞ 14 / 19

  15. I and Q Channels of a Passband Signal √ √ s p ( t ) = 2 s c ( t ) cos 2 π f c t − 2 s s ( t ) sin 2 π f c t � �� � � �� � I Component Q Component √ x c ( t ) = 2 s c ( t ) cos 2 π f c t √ x s ( t ) = 2 s s ( t ) sin 2 π f c t I and Q Channels of a Passband Signal are Orthogonal � x c , x s � = 0 15 / 19

  16. Passband and Baseband Inner Products � u p , v p � = � u c , v c � + � u s , v s � = Re ( � u , v � ) Energy of Complex Envelope = Energy of Passband Signal � s � 2 = � s p � 2 16 / 19

  17. Complex Baseband Equivalent of Passband Filtering s p ( t ) Passband signal h p ( t ) Impulse response of passband filter y p ( t ) Filter output y p ( t ) = s p ( t ) ⋆ h p ( t ) Y p ( f ) = S p ( f ) H p ( f ) S + ( f ) = S p ( f ) u ( f ) H + ( f ) = H p ( f ) u ( f ) Y + ( f ) = Y p ( f ) u ( f ) Y + ( f ) = S + ( f ) H + ( f ) √ √ 1 Y ( f ) = 2 Y + ( f + f c ) = 2 S + ( f + f c ) H + ( f + f c ) = √ S ( f ) H ( f ) 2 17 / 19

  18. Complex Baseband Equivalent of Passband Filtering 1 y ( t ) = √ s ( t ) ⋆ h ( t ) 2 1 √ y c = ( s c ⋆ h c − s s ⋆ h s ) 2 1 y s = √ ( s s ⋆ h c + s c ⋆ h s ) 2 18 / 19

  19. Thanks for your attention 19 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend