compatibility relations on codes and free monoids
play

Compatibility relations on codes and free monoids University of - PowerPoint PPT Presentation

Tomi Krki Compatibility relations on codes and free monoids University of Turku and Turku Centre for Computer Science (TUCS) Introduction 2 Introduction 2 Introduction 2 Introduction 2 Introduction 2 Outline of Topics Word


  1. Tomi Kärki Compatibility relations on codes and free monoids University of Turku and Turku Centre for Computer Science (TUCS)

  2. Introduction 2

  3. Introduction 2

  4. Introduction 2

  5. Introduction 2

  6. Introduction 2

  7. Outline of Topics • Word relations • Relational codes • Minimal and maximal relations • Relationally free monoids and stability • Hulls • Defect effect 3

  8. Notations an alphabet A empty word ε a set of words over A ∗ X R ⊆ X × X a relation on X ( x, y ) ∈ R x R y { ( x, x ) | x ∈ X } ι X { ( x, y ) | x, y ∈ X } Ω X � R � reflexive and symmetric closure of R R ∩ ( Y × Y ) R Y { u ∈ A ∗ | ∃ x ∈ X : x R u } R ( X ) 4

  9. Word relations • compatibility relation = reflexive and symmetric 5

  10. Word relations • compatibility relation = reflexive and symmetric • word relation R = compatibility relation and a 1 · · · a m R b 1 · · · b n ⇔ m = n and a i R b i for all i = 1 , 2 , . . . , m where a 1 , . . . , a m , b 1 , . . . , b n ∈ A 5

  11. Word relations • compatibility relation = reflexive and symmetric • word relation R = compatibility relation and a 1 · · · a m R b 1 · · · b n ⇔ m = n and a i R b i for all i = 1 , 2 , . . . , m where a 1 , . . . , a m , b 1 , . . . , b n ∈ A • If u R v , then words u and v are R -compatible 5

  12. Word relations • compatibility relation = reflexive and symmetric • word relation R = compatibility relation and a 1 · · · a m R b 1 · · · b n ⇔ m = n and a i R b i for all i = 1 , 2 , . . . , m where a 1 , . . . , a m , b 1 , . . . , b n ∈ A • If u R v , then words u and v are R -compatible u R v, u ′ R v ′ ⇒ uu ′ R vv ′ , � multiplicativity: • uu ′ R vv ′ , | u | = | v | ⇒ u R v, u ′ R v ′ simplifiability: 5

  13. Word relations Example 1. A = { a, b, c } R = �{ ( a, b ) }� = { ( a, a ) , ( b, b ) , ( c, c ) , ( a, b ) , ( b, a ) } 6

  14. Word relations Example 1. A = { a, b, c } R = �{ ( a, b ) }� = { ( a, a ) , ( b, b ) , ( c, c ) , ( a, b ) , ( b, a ) } abba R baab 6

  15. Word relations Example 1. A = { a, b, c } R = �{ ( a, b ) }� = { ( a, a ) , ( b, b ) , ( c, c ) , ( a, b ) , ( b, a ) } abba R baab abc � R cbc 6

  16. Word relations Example 1. A = { a, b, c } R = �{ ( a, b ) }� = { ( a, a ) , ( b, b ) , ( c, c ) , ( a, b ) , ( b, a ) } abba R baab abc � R cbc Example 2. 6

  17. Word relations Example 1. A = { a, b, c } R = �{ ( a, b ) }� = { ( a, a ) , ( b, b ) , ( c, c ) , ( a, b ) , ( b, a ) } abba R baab abc � R cbc Example 2. Partial words 6

  18. Word relations Example 1. A = { a, b, c } R = �{ ( a, b ) }� = { ( a, a ) , ( b, b ) , ( c, c ) , ( a, b ) , ( b, a ) } abba R baab abc � R cbc Example 2. Partial words k n ♦ w l ♦ dg e ♦ n o w ♦♦ dg ♦ k n o w l e dg e 6

  19. Word relations Example 1. A = { a, b, c } R = �{ ( a, b ) }� = { ( a, a ) , ( b, b ) , ( c, c ) , ( a, b ) , ( b, a ) } abba R baab abc � R cbc Example 2. Partial words k n ♦ w l ♦ dg e ♦ n o w ♦♦ dg ♦ k n o w l e dg e R ↑ = �{ ( ♦ , a ) | a ∈ A }� 6

  20. Relational codes • Let R and S be word relations 7

  21. Relational codes • Let R and S be word relations • X ⊆ A ∗ is an ( R, S ) -code if for all n, m ≥ 1 and x 1 , . . . , x m , y 1 , . . . , y n ∈ X , we have x 1 · · · x m R y 1 · · · y n ⇒ n = m and x i S y i for i = 1 , 2 , . . . , m 7

  22. Relational codes • Let R and S be word relations • X ⊆ A ∗ is an ( R, S ) -code if for all n, m ≥ 1 and x 1 , . . . , x m , y 1 , . . . , y n ∈ X , we have x 1 · · · x m R y 1 · · · y n ⇒ n = m and x i S y i for i = 1 , 2 , . . . , m • ( R, S ) -code relational code ( R, ι ) -code strong R -code ( R, R ) -code weak R -code ( ι, ι ) -code code 7

  23. Relational codes Example. A = { a, b, c } X = { ab, c } S = ι R = ι R = �{ ( a, c ) }� R = �{ ( a, c ) , ( b, c ) }� 8

  24. Relational codes Example. A = { a, b, c } X = { ab, c } S = ι R = ι (prefix) code R = �{ ( a, c ) }� R = �{ ( a, c ) , ( b, c ) }� 8

  25. Relational codes Example. A = { a, b, c } X = { ab, c } S = ι R = ι (prefix) code R = �{ ( a, c ) }� ( R, ι ) -code R = �{ ( a, c ) , ( b, c ) }� 8

  26. Relational codes Example. A = { a, b, c } X = { ab, c } S = ι R = ι (prefix) code R = �{ ( a, c ) }� ( R, ι ) -code R = �{ ( a, c ) , ( b, c ) }� ab R c.c 8

  27. Relational codes x 1 · · · x m R y 1 · · · y n ⇒ n = m and x i S y i for i = 1 , 2 , . . . , m 9

  28. Relational codes x 1 · · · x m R y 1 · · · y n ⇒ n = m and x i S y i for i = 1 , 2 , . . . , m Ω Ω . . . . . . R 2 S 2 R 1 S 1 . . . . . . ι ι 9

  29. Relational codes x 1 · · · x m R y 1 · · · y n ⇒ n = m and x i S y i for i = 1 , 2 , . . . , m Ω Ω Theorem 3. Every ( R, S ) -code X is a code. . . . . . . R 2 S 2 R 1 S 1 . . . . . . ι ι 9

  30. Relational codes x 1 · · · x m R y 1 · · · y n ⇒ n = m and x i S y i for i = 1 , 2 , . . . , m Ω Ω Theorem 3. Every ( R, S ) -code X is a code. . . . . . . Theorem 4. Let X be a subset of A ∗ . X R 2 S 2 is an ( R, S ) -code ⇔ X is an ( R, R ) -code and R X ⊆ S X . R 1 S 1 . . . . . . ι ι 9

  31. Modified Sardinas-Patterson algorithm 10

  32. Modified Sardinas-Patterson algorithm • finite X ⊆ A + 10

  33. Modified Sardinas-Patterson algorithm • finite X ⊆ A + • U 1 = R ( X ) − 1 X \ { ε } 10

  34. Modified Sardinas-Patterson algorithm • finite X ⊆ A + • U 1 = R ( X ) − 1 X \ { ε } • U n +1 = R ( X ) − 1 U n ∪ R ( U n ) − 1 X for n ≥ 1 10

  35. Modified Sardinas-Patterson algorithm • finite X ⊆ A + • U 1 = R ( X ) − 1 X \ { ε } • U n +1 = R ( X ) − 1 U n ∪ R ( U n ) − 1 X for n ≥ 1 • Let i ≥ 2 satisfy U i = U i − t for some t > 0 10

  36. Modified Sardinas-Patterson algorithm • finite X ⊆ A + • U 1 = R ( X ) − 1 X \ { ε } • U n +1 = R ( X ) − 1 U n ∪ R ( U n ) − 1 X for n ≥ 1 • Let i ≥ 2 satisfy U i = U i − t for some t > 0 • X is a weak R -code if and only if i − 1 � ε �∈ U j j =1 10

  37. Modified Sardinas-Patterson algorithm Example. A = { a, b, c } X = { abb, ca, c } R = �{ ( a, b ) , ( b, c ) }� 11

  38. Modified Sardinas-Patterson algorithm Example. A = { a, b, c } X = { abb, ca, c } R = �{ ( a, b ) , ( b, c ) }� U 1 = R ( X ) − 1 X \ { ε } = { a } 11

  39. Modified Sardinas-Patterson algorithm Example. A = { a, b, c } X = { abb, ca, c } R = �{ ( a, b ) , ( b, c ) }� U 1 = R ( X ) − 1 X \ { ε } = { a } U 2 = R ( X ) − 1 U 1 ∪ R ( U 1 ) − 1 X = ∅ ∪ { bb } 11

  40. Modified Sardinas-Patterson algorithm Example. A = { a, b, c } X = { abb, ca, c } R = �{ ( a, b ) , ( b, c ) }� U 1 = R ( X ) − 1 X \ { ε } = { a } U 2 = R ( X ) − 1 U 1 ∪ R ( U 1 ) − 1 X = ∅ ∪ { bb } U 3 = R ( X ) − 1 U 2 ∪ R ( U 2 ) − 1 X = { ε, b } ∪ { ε, b } 11

  41. Modified Sardinas-Patterson algorithm Example. A = { a, b, c } X = { abb, ca, c } R = �{ ( a, b ) , ( b, c ) }� U 1 = R ( X ) − 1 X \ { ε } = { a } U 2 = R ( X ) − 1 U 1 ∪ R ( U 1 ) − 1 X = ∅ ∪ { bb } U 3 = R ( X ) − 1 U 2 ∪ R ( U 2 ) − 1 X = { ε, b } ∪ { ε, b } = ⇒ X is not an ( R, R ) -code ca.ca R c.abb 11

  42. Minimal and maximal relations S ∈ S min ( X, R ) : X is an ( R, S ) -code ∀ S ′ ⊂ S : X is not an ( R, S ′ ) -code 12

  43. Minimal and maximal relations S ∈ S min ( X, R ) : X is an ( R, S ) -code ∀ S ′ ⊂ S : X is not an ( R, S ′ ) -code S ∈ S max ( X, R ) : X is an ( R, S ) -code ∀ S ′ ⊃ S : X is not an ( R, S ′ ) -code R ∈ R min ( X, S ) : X is an ( R, S ) -code ∀ R ′ ⊂ R : X is not an ( R ′ , S ) -code R ∈ R max ( X, S ) : X is an ( R, S ) -code ∀ R ′ ⊃ R : X is not an ( R ′ , S ) -code 12

  44. Minimal and maximal relations S ∈ S min ( X, R ) : X is an ( R, S ) -code ∀ S ′ ⊂ S : X is not an ( R, S ′ ) -code S ∈ S max ( X, R ) : X is an ( R, S ) -code ∀ S ′ ⊃ S : X is not an ( R, S ′ ) -code R ∈ R min ( X, S ) : X is an ( R, S ) -code ∀ R ′ ⊂ R : X is not an ( R ′ , S ) -code R ∈ R max ( X, S ) : X is an ( R, S ) -code ∀ R ′ ⊃ R : X is not an ( R ′ , S ) -code • S max ( X, R ) = { Ω } 12

  45. Minimal and maximal relations S ∈ S min ( X, R ) : X is an ( R, S ) -code ∀ S ′ ⊂ S : X is not an ( R, S ′ ) -code S ∈ S max ( X, R ) : X is an ( R, S ) -code ∀ S ′ ⊃ S : X is not an ( R, S ′ ) -code R ∈ R min ( X, S ) : X is an ( R, S ) -code ∀ R ′ ⊂ R : X is not an ( R ′ , S ) -code R ∈ R max ( X, S ) : X is an ( R, S ) -code ∀ R ′ ⊃ R : X is not an ( R ′ , S ) -code • S max ( X, R ) = { Ω } • R min ( X, S ) = { ι } 12

  46. Minimal and maximal relations • S min ( X, R ) is a unique element 13

  47. Minimal and maximal relations • S min ( X, R ) is a unique element • finding S min ( X, R ) easy 13

  48. Minimal and maximal relations • S min ( X, R ) is a unique element • finding S min ( X, R ) easy • R max ( X, S ) can contain relations of different size 13

  49. Minimal and maximal relations • S min ( X, R ) is a unique element • finding S min ( X, R ) easy • R max ( X, S ) can contain relations of different size • finding R max ( X, S ) hard for arbitrary alphabets 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend