monoids and maximal codes
play

Monoids and Maximal Codes Fabio Burderi Dipartimento di Matematica - PowerPoint PPT Presentation

Monoids and Maximal Codes Fabio Burderi Dipartimento di Matematica e Informatica Universit` a degli studi di Palermo, burderi@math.unipa.it WORDS, Sept. 12-16 2011, Prague logo WORDS 11 Prague Fabio Burderi Monoids and Maximal Codes 1


  1. Monoids and Maximal Codes Fabio Burderi Dipartimento di Matematica e Informatica Universit` a degli studi di Palermo, burderi@math.unipa.it WORDS, Sept. 12-16 2011, Prague logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 1

  2. Let A be an alphabet. Let A ∗ denote the free monoid generated by A , and let A + = A ∗ \{ ε } . logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 2

  3. Let A be an alphabet. Let A ∗ denote the free monoid generated by A , and let A + = A ∗ \{ ε } . Attention !! A code X over A is a subset of A + . The words of X are called code words , the elements of X + messages . logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 2

  4. Let A be an alphabet. Let A ∗ denote the free monoid generated by A , and let A + = A ∗ \{ ε } . Attention !! A code X over A is a subset of A + . The words of X are called code words , the elements of X + messages . If w ∈ A ∗ , a factorization of w is a sequence of words ( v i ) 1 ≤ i ≤ s such that w = v 1 v 2 · · · v s . logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 2

  5. Let A be an alphabet. Let A ∗ denote the free monoid generated by A , and let A + = A ∗ \{ ε } . Attention !! A code X over A is a subset of A + . The words of X are called code words , the elements of X + messages . If w ∈ A ∗ , a factorization of w is a sequence of words ( v i ) 1 ≤ i ≤ s such that w = v 1 v 2 · · · v s . If X is a code, a relation between code words is a pair of factorizations x 1 x 2 · · · x s = y 1 y 2 · · · y t into code words of a same message w ∈ X + ; the relation is said non-trivial if the factorizations are distinct. logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 2

  6. Let A be an alphabet. Let A ∗ denote the free monoid generated by A , and let A + = A ∗ \{ ε } . Attention !! A code X over A is a subset of A + . The words of X are called code words , the elements of X + messages . If w ∈ A ∗ , a factorization of w is a sequence of words ( v i ) 1 ≤ i ≤ s such that w = v 1 v 2 · · · v s . If X is a code, a relation between code words is a pair of factorizations x 1 x 2 · · · x s = y 1 y 2 · · · y t into code words of a same message w ∈ X + ; the relation is said non-trivial if the factorizations are distinct. We say that the relation x 1 x 2 · · · x s = y 1 y 2 · · · y t is prime if for all i < s and for all j < t one has x 1 x 2 · · · x i � = y 1 y 2 · · · y j . logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 2

  7. Let A be an alphabet. Let A ∗ denote the free monoid generated by A , and let A + = A ∗ \{ ε } . Attention !! A code X over A is a subset of A + . The words of X are called code words , the elements of X + messages . If w ∈ A ∗ , a factorization of w is a sequence of words ( v i ) 1 ≤ i ≤ s such that w = v 1 v 2 · · · v s . If X is a code, a relation between code words is a pair of factorizations x 1 x 2 · · · x s = y 1 y 2 · · · y t into code words of a same message w ∈ X + ; the relation is said non-trivial if the factorizations are distinct. We say that the relation x 1 x 2 · · · x s = y 1 y 2 · · · y t is prime if for all i < s and for all j < t one has x 1 x 2 · · · x i � = y 1 y 2 · · · y j . A relation w = x 1 x 2 · · · x s = y 1 y 2 · · · y t , can be univocally factorized into prime relations. logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 2

  8. A code X is said to be uniquely decipherable ( UD ) if there are not non-trivial relations on X . Every message has an unique factorization into code words: x 1 x 2 · · · x n = y 1 y 2 · · · y m , x i , y j ∈ X implies n = m and x 1 = y 1 , . . . , x n = y n . logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 3

  9. A code X is said to be uniquely decipherable ( UD ) if there are not non-trivial relations on X . Every message has an unique factorization into code words: x 1 x 2 · · · x n = y 1 y 2 · · · y m , x i , y j ∈ X implies n = m and x 1 = y 1 , . . . , x n = y n . X = A 2 = { 00 , 01 , 10 , 11 } , A = { 0 , 1 } , Example 1 z = 0100101011 logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 3

  10. A code X is said to be uniquely decipherable ( UD ) if there are not non-trivial relations on X . Every message has an unique factorization into code words: x 1 x 2 · · · x n = y 1 y 2 · · · y m , x i , y j ∈ X implies n = m and x 1 = y 1 , . . . , x n = y n . X = A 2 = { 00 , 01 , 10 , 11 } , A = { 0 , 1 } , Example 1 z = 0100101011 = 01 · 00 · 10 · 10 · 11 logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 3

  11. A code X is said to be uniquely decipherable ( UD ) if there are not non-trivial relations on X . Every message has an unique factorization into code words: x 1 x 2 · · · x n = y 1 y 2 · · · y m , x i , y j ∈ X implies n = m and x 1 = y 1 , . . . , x n = y n . X = A 2 = { 00 , 01 , 10 , 11 } , A = { 0 , 1 } , Example 1 z = 0100101011 = 01 · 00 · 10 · 10 · 11 X = { 0 , 01 , 10 } Example 2 z = 010 logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 3

  12. A code X is said to be uniquely decipherable ( UD ) if there are not non-trivial relations on X . Every message has an unique factorization into code words: x 1 x 2 · · · x n = y 1 y 2 · · · y m , x i , y j ∈ X implies n = m and x 1 = y 1 , . . . , x n = y n . X = A 2 = { 00 , 01 , 10 , 11 } , A = { 0 , 1 } , Example 1 z = 0100101011 = 01 · 00 · 10 · 10 · 11 X = { 0 , 01 , 10 } Example 2 z = 010 = 0 · 10 = 01 · 0 logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 3

  13. Let X be a code and let P = { X i | i ∈ I } be a partition of X i.e. : � i ∈ I X i = X and X i ∩ X j = ∅ , iff i � = j . logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 4

  14. Let X be a code and let P = { X i | i ∈ I } be a partition of X i.e. : � i ∈ I X i = X and X i ∩ X j = ∅ , iff i � = j . A P - factorization of a message w ∈ X + is a factorization w = z 1 z 2 · · · z t where: for each i z i ∈ X + for some X k ∈ P k , if t > 1, z i ∈ X + ∈ X + k ⇒ z i +1 / (1 ≤ i ≤ t − 1). k , logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 4

  15. Example 3 X = { 00 , 11 , 000 , 111 } = { x 1 , x 2 , x 3 , x 4 } , P = { X 1 , X 2 , } , X 1 = { 00 , 11 } , X 2 = { 000 , 111 } . Let w = 1100000111 ∈ X + , w = 11 · 00 · 000 · 111 logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 5

  16. Example 3 X = { 00 , 11 , 000 , 111 } = { x 1 , x 2 , x 3 , x 4 } , P = { X 1 , X 2 , } , X 1 = { 00 , 11 } , X 2 = { 000 , 111 } . Let w = 1100000111 ∈ X + , w = 11 · 00 · 000 · 111 w = z 1 z 2 = (11 · 00)(000 · 111) logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 5

  17. Example 3 X = { 00 , 11 , 000 , 111 } = { x 1 , x 2 , x 3 , x 4 } , P = { X 1 , X 2 , } , X 1 = { 00 , 11 } , X 2 = { 000 , 111 } . Let w = 1100000111 ∈ X + , w = 11 · 00 · 000 · 111 w = z 1 z 2 = (11 · 00)(000 · 111) w = 11 · 000 · 00 · 111 w = u 1 u 2 u 3 u 4 = (11)(000)(00)(111) z 1 z 2 and u 1 u 2 u 3 u 4 are P − factorizzations of z . logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 5

  18. Example 3 X = { 00 , 11 , 000 , 111 } = { x 1 , x 2 , x 3 , x 4 } , P = { X 1 , X 2 , } , X 1 = { 00 , 11 } , X 2 = { 000 , 111 } . Let w = 1100000111 ∈ X + , w = 11 · 00 · 000 · 111 w = z 1 z 2 = (11 · 00)(000 · 111) w = 11 · 000 · 00 · 111 w = u 1 u 2 u 3 u 4 = (11)(000)(00)(111) z 1 z 2 and u 1 u 2 u 3 u 4 are P − factorizzations of z . The partition P is called a coding partition if any element w ∈ X + has a unique P - factorization , i.e. if w = z 1 z 2 · · · z s = u 1 u 2 · · · u t , z 1 z 2 · · · z s , u 1 u 2 · · · u t with P - factorizations of w , then: s = t and z i = u i for i = 1 , . . . , s . logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 5

  19. Example 3 X = { 00 , 11 , 000 , 111 } , P = { X 1 , X 2 , } , X 1 = { 00 , 000 } , X 2 = { 11 , 111 } . w = 1100000111 = 11 · 00000 · 111 P is a coding partition of X . logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 6

  20. Example 3 X = { 00 , 11 , 000 , 111 } , P = { X 1 , X 2 , } , X 1 = { 00 , 000 } , X 2 = { 11 , 111 } . w = 1100000111 = 11 · 00000 · 111 P is a coding partition of X . Let P = { X i | i ∈ I } be a partition of a code X . The partition P is a coding partition iff for every prime relation x 1 x 2 · · · x s = y 1 y 2 · · · y t , the code words x i , y j belong to the same component of the partition. logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 6

  21. Example 3 X = { 00 , 11 , 000 , 111 } , P = { X 1 , X 2 , } , X 1 = { 00 , 000 } , X 2 = { 11 , 111 } . w = 1100000111 = 11 · 00000 · 111 P is a coding partition of X . Let P = { X i | i ∈ I } be a partition of a code X . The partition P is a coding partition iff for every prime relation x 1 x 2 · · · x s = y 1 y 2 · · · y t , the code words x i , y j belong to the same component of the partition. A code X is called ambiguous if it is not UD . A code is called totally ambiguous ( TA ) if | X | > 1 and the only coding partition is the trivial partition: P = { X } . X = { 0 , 01 , 10 } . Example 2 The word w = 010 ∈ X + has two factorizations : w = 0 · 10 = 01 · 0. X is a totally ambiguous code. logo WORDS ’11 Prague Fabio Burderi Monoids and Maximal Codes 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend