combinatorial interpretations for vectors
play

Combinatorial interpretations for -vectors T. Kyle Petersen DePaul - PowerPoint PPT Presentation

Combinatorial interpretations for -vectors T. Kyle Petersen DePaul University joint with Eran Nevo (Cornell), arXiv:0909.0694 San Francisco, January, 2010 Combinatorial interpretations for -vectors Gals conjecture An example The


  1. Combinatorial interpretations for γ -vectors T. Kyle Petersen DePaul University joint with Eran Nevo (Cornell), arXiv:0909.0694 San Francisco, January, 2010

  2. Combinatorial interpretations for γ -vectors Gal’s conjecture An example The Γ complex A conjecture

  3. The f - and h -vectors Let ∆ be an ( n − 1)-dimensional simplicial complex, f k (∆) = number of faces of dimension k − 1 n � f k (∆) t k f (∆; t ) := k =0 ( f 0 , f 1 , . . . , f n ) is the f -vector n � h (∆; t ) := (1 − t ) n f (∆; t / (1 − t )) = h k (∆) t k k =0 ( h 0 , h 1 , . . . , h n ) is the h-vector

  4. The f - and h -vectors Let ∆ be an ( n − 1)-dimensional simplicial complex, f k (∆) = number of faces of dimension k − 1 n � f k (∆) t k f (∆; t ) := k =0 ( f 0 , f 1 , . . . , f n ) is the f -vector n � h (∆; t ) := (1 − t ) n f (∆; t / (1 − t )) = h k (∆) t k k =0 ( h 0 , h 1 , . . . , h n ) is the h-vector f -vectors are characterized by the Kruskal-Katona inequalities

  5. The f - and h -vectors • • • • ∆ : • •

  6. The f - and h -vectors • • • • ∆ : • • ◮ f 0 = 1

  7. The f - and h -vectors • • • • ∆ : • • ◮ f 0 = 1 ◮ f 1 = 6

  8. The f - and h -vectors • • • • ∆ : • • ◮ f 0 = 1 ◮ f 1 = 6 ◮ f 2 = 6

  9. The f - and h -vectors • • • • ∆ : • • ◮ f 0 = 1 ◮ f 1 = 6 ◮ f 2 = 6 f (∆; t ) = 1 + 6 t + 6 t 2

  10. The f - and h -vectors • • • • ∆ : • • ◮ f 0 = 1 ◮ f 1 = 6 ◮ f 2 = 6 f (∆; t ) = 1 + 6 t + 6 t 2 = (1 + 2 t + t 2 )

  11. The f - and h -vectors • • • • ∆ : • • ◮ f 0 = 1 ◮ f 1 = 6 ◮ f 2 = 6 f (∆; t ) = 1 + 6 t + 6 t 2 = (1 + 2 t + t 2 ) + 4 t (1 + t )

  12. The f - and h -vectors • • • • ∆ : • • ◮ f 0 = 1 ◮ f 1 = 6 ◮ f 2 = 6 f (∆; t ) = 1 + 6 t + 6 t 2 = (1 + 2 t + t 2 ) + 4 t (1 + t ) + t 2 (1)

  13. The f - and h -vectors • • • • ∆ : • • ◮ f 0 = 1 ◮ f 1 = 6 ◮ f 2 = 6 f (∆; t ) = 1 + 6 t + 6 t 2 = (1 + 2 t + t 2 ) + 4 t (1 + t ) + t 2 (1) h (∆; t ) = 1 + 4 t + t 2

  14. The γ -vector If h ( t ) = � n i =0 h i t i is symmetric, then there exist γ i such that n / 2 � γ i t i (1 + t ) n − 2 i , h ( t ) = i =0

  15. The γ -vector If h ( t ) = � n i =0 h i t i is symmetric, then there exist γ i such that n / 2 � γ i t i (1 + t ) n − 2 i , h ( t ) = i =0 e.g., 1 + 3 t + 7 t 2 + 3 t 3 + t 4

  16. The γ -vector If h ( t ) = � n i =0 h i t i is symmetric, then there exist γ i such that n / 2 � γ i t i (1 + t ) n − 2 i , h ( t ) = i =0 e.g., 1 + 3 t + 7 t 2 + 3 t 3 + t 4 1 + 4 t + 6 t 2 + 4 t 3 + t 4

  17. The γ -vector If h ( t ) = � n i =0 h i t i is symmetric, then there exist γ i such that n / 2 � γ i t i (1 + t ) n − 2 i , h ( t ) = i =0 e.g., 1 + 3 t + 7 t 2 + 3 t 3 + t 4 1 + 4 t + 6 t 2 + 4 t 3 + t 4 − t (1 + 2 t + t 2 )

  18. The γ -vector If h ( t ) = � n i =0 h i t i is symmetric, then there exist γ i such that n / 2 � γ i t i (1 + t ) n − 2 i , h ( t ) = i =0 e.g., 1 + 3 t + 7 t 2 + 3 t 3 + t 4 1 + 4 t + 6 t 2 + 4 t 3 + t 4 − t (1 + 2 t + t 2 ) +3 t 2

  19. The γ -vector If h ( t ) = � n i =0 h i t i is symmetric, then there exist γ i such that n / 2 � γ i t i (1 + t ) n − 2 i , h ( t ) = i =0 e.g., 1 + 3 t + 7 t 2 + 3 t 3 + t 4 1 + 4 t + 6 t 2 + 4 t 3 + t 4 − t (1 + 2 t + t 2 ) +3 t 2 1 + 3 t + 7 t 2 + 3 t 3 + t 4 = (1 + t ) 4 − t (1 + t ) 2 + 3 t 2

  20. The γ -vector If h ( t ) = � n i =0 h i t i is symmetric, then there exist γ i such that n / 2 � γ i t i (1 + t ) n − 2 i , h ( t ) = i =0 e.g., 1 + 3 t + 7 t 2 + 3 t 3 + t 4 1 + 4 t + 6 t 2 + 4 t 3 + t 4 − t (1 + 2 t + t 2 ) +3 t 2 1 + 3 t + 7 t 2 + 3 t 3 + t 4 = (1 + t ) 4 − t (1 + t ) 2 + 3 t 2 the vector ( γ 0 , γ 1 , . . . ) is called the γ -vector

  21. Gal’s conjecture For ∆ a sphere, Dehn-Sommerville relations say h (∆) is symmetric, h i = h n − i , and hence ∆ has a well-defined γ -vector, denoted γ (∆)

  22. Gal’s conjecture For ∆ a sphere, Dehn-Sommerville relations say h (∆) is symmetric, h i = h n − i , and hence ∆ has a well-defined γ -vector, denoted γ (∆) Conjecture (Gal (2005)) If ∆ is a flag homology sphere, then γ (∆) is nonnegative

  23. Gal’s conjecture For ∆ a sphere, Dehn-Sommerville relations say h (∆) is symmetric, h i = h n − i , and hence ∆ has a well-defined γ -vector, denoted γ (∆) Conjecture (Gal (2005)) If ∆ is a flag homology sphere, then γ (∆) is nonnegative ◮ implies the Charney-Davis conjecture

  24. Gal’s conjecture For ∆ a sphere, Dehn-Sommerville relations say h (∆) is symmetric, h i = h n − i , and hence ∆ has a well-defined γ -vector, denoted γ (∆) Conjecture (Gal (2005)) If ∆ is a flag homology sphere, then γ (∆) is nonnegative ◮ implies the Charney-Davis conjecture ◮ true in dimension ≤ 4 and other interesting cases (e.g., barycentric subdivisions, Coxeter complexes)

  25. Gal’s conjecture For ∆ a sphere, Dehn-Sommerville relations say h (∆) is symmetric, h i = h n − i , and hence ∆ has a well-defined γ -vector, denoted γ (∆) Conjecture (Gal (2005)) If ∆ is a flag homology sphere, then γ (∆) is nonnegative ◮ implies the Charney-Davis conjecture ◮ true in dimension ≤ 4 and other interesting cases (e.g., barycentric subdivisions, Coxeter complexes) What do the entries of the γ -vector count?

  26. Combinatorial interpretations for γ -vectors Gal’s conjecture An example The Γ complex A conjecture

  27. • • • • • •

  28. Eulerian polynomials Let w ∈ S n +1 and d ( w ) := |{ i : w i > w i +1 }| . Then, � t d ( w ) = h (∆( A n ); t ) A n ( t ) = w ∈ S n +1

  29. Eulerian polynomials Let w ∈ S n +1 and d ( w ) := |{ i : w i > w i +1 }| . Then, � t d ( w ) = h (∆( A n ); t ) A n ( t ) = w ∈ S n +1 t d ( w ) w d ( w ) 123 132 213 231 312 321

  30. Eulerian polynomials Let w ∈ S n +1 and d ( w ) := |{ i : w i > w i +1 }| . Then, � t d ( w ) = h (∆( A n ); t ) A n ( t ) = w ∈ S n +1 t d ( w ) w d ( w ) 123 0 1 132 213 231 312 321

  31. Eulerian polynomials Let w ∈ S n +1 and d ( w ) := |{ i : w i > w i +1 }| . Then, � t d ( w ) = h (∆( A n ); t ) A n ( t ) = w ∈ S n +1 t d ( w ) w d ( w ) 123 0 1 132 1 t 213 231 312 321

  32. Eulerian polynomials Let w ∈ S n +1 and d ( w ) := |{ i : w i > w i +1 }| . Then, � t d ( w ) = h (∆( A n ); t ) A n ( t ) = w ∈ S n +1 t d ( w ) w d ( w ) 123 0 1 132 1 t 213 1 t 231 312 321

  33. Eulerian polynomials Let w ∈ S n +1 and d ( w ) := |{ i : w i > w i +1 }| . Then, � t d ( w ) = h (∆( A n ); t ) A n ( t ) = w ∈ S n +1 t d ( w ) w d ( w ) 123 0 1 132 1 t 213 1 t 231 1 t 312 321

  34. Eulerian polynomials Let w ∈ S n +1 and d ( w ) := |{ i : w i > w i +1 }| . Then, � t d ( w ) = h (∆( A n ); t ) A n ( t ) = w ∈ S n +1 t d ( w ) w d ( w ) 123 0 1 132 1 t 213 1 t 231 1 t 312 1 t 321

  35. Eulerian polynomials Let w ∈ S n +1 and d ( w ) := |{ i : w i > w i +1 }| . Then, � t d ( w ) = h (∆( A n ); t ) A n ( t ) = w ∈ S n +1 t d ( w ) w d ( w ) 123 0 1 132 1 t 213 1 t 231 1 t 312 1 t t 2 321 2

  36. Eulerian polynomials Let w ∈ S n +1 and d ( w ) := |{ i : w i > w i +1 }| . Then, � t d ( w ) = h (∆( A n ); t ) A n ( t ) = w ∈ S n +1 t d ( w ) w d ( w ) 123 0 1 132 1 t 213 1 t 231 1 t 312 1 t t 2 321 2 A 2 ( t ) = 1 + 4 t + t 2 = h (∆( A 2 ); t )

  37. Eulerian polynomials We have: A 1 ( t ) = 1 + t A 2 ( t ) = 1 + 4 t + t 2 A 3 ( t ) = 1 + 11 t + 11 t 2 + t 3 A 4 ( t ) = 1 + 26 t + 66 t 2 + 26 t 3 + t 4 . . .

  38. Eulerian polynomials We have: A 1 ( t ) = 1 + t = (1 + t ) A 2 ( t ) = 1 + 4 t + t 2 A 3 ( t ) = 1 + 11 t + 11 t 2 + t 3 A 4 ( t ) = 1 + 26 t + 66 t 2 + 26 t 3 + t 4 . . .

  39. Eulerian polynomials We have: A 1 ( t ) = 1 + t = (1 + t ) A 2 ( t ) = 1 + 4 t + t 2 = (1 + t ) 2 + 2 t A 3 ( t ) = 1 + 11 t + 11 t 2 + t 3 A 4 ( t ) = 1 + 26 t + 66 t 2 + 26 t 3 + t 4 . . .

  40. Eulerian polynomials We have: A 1 ( t ) = 1 + t = (1 + t ) A 2 ( t ) = 1 + 4 t + t 2 = (1 + t ) 2 + 2 t A 3 ( t ) = 1 + 11 t + 11 t 2 + t 3 = (1 + t ) 3 + 8 t (1 + t ) A 4 ( t ) = 1 + 26 t + 66 t 2 + 26 t 3 + t 4 . . .

  41. Eulerian polynomials We have: A 1 ( t ) = 1 + t = (1 + t ) A 2 ( t ) = 1 + 4 t + t 2 = (1 + t ) 2 + 2 t A 3 ( t ) = 1 + 11 t + 11 t 2 + t 3 = (1 + t ) 3 + 8 t (1 + t ) A 4 ( t ) = 1 + 26 t + 66 t 2 + 26 t 3 + t 4 = (1 + t ) 4 + 22 t (1 + t ) 2 + 16 t 2 . . .

  42. The γ -vector for A n Define � S n = { w ∈ S n : w n − 1 < w n , and if w i − 1 > w i then w i < w i − 1 }

  43. The γ -vector for A n Define � S n = { w ∈ S n : w n − 1 < w n , and if w i − 1 > w i then w i < w i − 1 } Theorem (Foata-Sch¨ utzenberger (1970)) � t d ( w ) (1 + t ) n − 2 d ( w ) , A n ( t ) = w ∈ b S n +1

  44. The γ -vector for A n Define � S n = { w ∈ S n : w n − 1 < w n , and if w i − 1 > w i then w i < w i − 1 } Theorem (Foata-Sch¨ utzenberger (1970)) � t d ( w ) (1 + t ) n − 2 d ( w ) , A n ( t ) = w ∈ b S n +1 i.e., γ i ( A n ) = |{ w ∈ � S n +1 : d ( w ) = i }|

  45. The γ -vector for A n � t d ( w ) (1 + t ) n − 2 d ( w ) A n ( t ) = w ∈ b S n +1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend