colorful simplicial depth
play

Colorful simplicial depth Zuzana Pat akov a joint work with Karim - PowerPoint PPT Presentation

Colorful simplicial depth Zuzana Pat akov a joint work with Karim Adiprasito, Philip Brinkmann, Arnau Padrol, Pavel Pat ak, and Raman Sanyal ICERM 1st December, Providence Colorful configurations C = { C 0 , . . . , C d } :


  1. Upper bound Theorem (Adiprasito, Brinkmann, Padrol, Pat´ ak, P, Sanyal) d � � � cdepth C ≤ 1 + Card C i − 1 . i =0 • for Card C i = d + 1, we have Deza’s upper bound 1 + d d +1 • the bound is tight!

  2. Upper bound Theorem (Adiprasito, Brinkmann, Padrol, Pat´ ak, P, Sanyal) d � � � cdepth C ≤ 1 + Card C i − 1 . i =0 • for Card C i = d + 1, we have Deza’s upper bound 1 + d d +1 • the bound is tight!

  3. Topological reformulation

  4. Topological approach • A = abstract simpl. complex of all colorful sets in � C i • B = all sets S ⊂ � C i s.t. ϕ ( S ) is non-hitting • f i ( K ) = number of i -dim simplices in K • cdepth( C ) = f d ( A ) − f d ( B ) • A ( d − 1) = B ( d − 1) ⇒ for i < d f i ( A ) = f i ( B ) β i ( A ) = � � ⇒ for i < d − 1 β i ( B )

  5. Topological approach • A = abstract simpl. complex of all colorful sets in � C i • B = all sets S ⊂ � C i s.t. ϕ ( S ) is non-hitting • f i ( K ) = number of i -dim simplices in K • cdepth( C ) = f d ( A ) − f d ( B ) • A ( d − 1) = B ( d − 1) ⇒ for i < d f i ( A ) = f i ( B ) β i ( A ) = � � ⇒ for i < d − 1 β i ( B )

  6. Topological approach • A = abstract simpl. complex of all colorful sets in � C i • B = all sets S ⊂ � C i s.t. ϕ ( S ) is non-hitting • f i ( K ) = number of i -dim simplices in K • cdepth( C ) = f d ( A ) − f d ( B ) • A ( d − 1) = B ( d − 1) ⇒ for i < d f i ( A ) = f i ( B ) β i ( A ) = � � ⇒ for i < d − 1 β i ( B )

  7. Topological approach • A = abstract simpl. complex of all colorful sets in � C i • B = all sets S ⊂ � C i s.t. ϕ ( S ) is non-hitting • f i ( K ) = number of i -dim simplices in K • cdepth( C ) = f d ( A ) − f d ( B ) • A ( d − 1) = B ( d − 1) ⇒ for i < d f i ( A ) = f i ( B ) β i ( A ) = � � ⇒ for i < d − 1 β i ( B )

  8. Topological approach • A = abstract simpl. complex of all colorful sets in � C i • B = all sets S ⊂ � C i s.t. ϕ ( S ) is non-hitting • f i ( K ) = number of i -dim simplices in K • cdepth( C ) = f d ( A ) − f d ( B ) • A ( d − 1) = B ( d − 1) ⇒ for i < d f i ( A ) = f i ( B ) β i ( A ) = � � ⇒ for i < d − 1 β i ( B )

  9. Topological approach • A = abstract simpl. complex of all colorful sets in � C i • B = all sets S ⊂ � C i s.t. ϕ ( S ) is non-hitting • f i ( K ) = number of i -dim simplices in K • cdepth( C ) = f d ( A ) − f d ( B ) • A ( d − 1) = B ( d − 1) ⇒ for i < d f i ( A ) = f i ( B ) β i ( A ) = � � ⇒ for i < d − 1 β i ( B )

  10. Topological approach • A = abstract simpl. complex of all colorful sets in � C i • B = all sets S ⊂ � C i s.t. ϕ ( S ) is non-hitting • f i ( K ) = number of i -dim simplices in K • cdepth( C ) = f d ( A ) − f d ( B ) • A ( d − 1) = B ( d − 1) ⇒ for i < d f i ( A ) = f i ( B ) β i ( A ) = � � ⇒ for i < d − 1 β i ( B )

  11. Topological approach cdepth C = f d ( A ) − f d ( B )

  12. Topological approach cdepth C = f d ( A ) − f d ( B )

  13. Topological approach cdepth C = f d ( A ) − f d ( B ) � d � d ( − 1) i � ( − 1) i f i ( A ) = χ ( A ) = − 1 + � β i ( A ) i =0 i =0

  14. Topological approach cdepth C = f d ( A ) − f d ( B ) � d � d ( − 1) i � ( − 1) i f i ( A ) = χ ( A ) = − 1 + � β i ( A ) i =0 i =0 � d � � d − 1 � ( − 1) i � ⇒ f d ( A ) = ( − 1) d ( − 1) i f i ( A ) β i ( A ) + 1 − i =0 i =0

  15. Topological approach cdepth C = ( − 1) d � d � � d − 1 � ( − 1) i � ( − 1) i f i ( A ) β i ( A ) + 1 − − f d ( B ) i =0 i =0 � d � � d − 1 � ( − 1) i � ⇒ f d ( A ) = ( − 1) d ( − 1) i f i ( A ) β i ( A ) + 1 − i =0 i =0

  16. Topological approach cdepth C = ( − 1) d � d � � d − 1 � ( − 1) i � ( − 1) i f i ( A ) β i ( A ) + 1 − − f d ( B ) i =0 i =0

  17. Topological approach cdepth C = ( − 1) d � d � � d − 1 � ( − 1) i � ( − 1) i f i ( A ) β i ( A ) + 1 − − f d ( B ) i =0 i =0 � d � � d − 1 � ( − 1) i � f d ( B ) = ( − 1) d ( − 1) i f i ( B ) β i ( B ) + 1 − i =0 i =0

  18. Topological approach cdepth C = ( − 1) d � d � d − 1 � ( − 1) i � ( − 1) i f i ( A ) β i ( A ) + 1 − i =0 i =0 � � d − 1 � d ( − 1) i � ( − 1) i f i ( B ) − β i ( B ) − 1 + i =0 i =0 � d � � d − 1 � ( − 1) i � f d ( B ) = ( − 1) d ( − 1) i f i ( B ) β i ( B ) + 1 − i =0 i =0

  19. Topological approach cdepth C = ( − 1) d � d � d − 1 � ( − 1) i � ( − 1) i f i ( A ) β i ( A ) + 1 − i =0 i =0 � � d − 1 � d ( − 1) i � ( − 1) i f i ( B ) − β i ( B ) − 1 + i =0 i =0

  20. Topological approach cdepth C = ( − 1) d � d � d − 1 � ( − 1) i � ( − 1) i f i ( A ) β i ( A ) − i =0 i =0 � � d − 1 � d ( − 1) i � ( − 1) i f i ( B ) − β i ( B )+ i =0 i =0

  21. Topological approach cdepth C = ( − 1) d � d � d − 1 � ( − 1) i � ( − 1) i f i ( A ) β i ( A ) − i =0 i =0 � � d − 1 � d ( − 1) i � ( − 1) i f i ( B ) − β i ( B )+ i =0 i =0

  22. Topological approach cdepth C = ( − 1) d � d � d − 1 � ( − 1) i � ( − 1) i f i ( A ) β i ( A ) − i =0 i =0 � � d − 1 � d ( − 1) i � ( − 1) i f i ( B ) − β i ( B )+ i =0 i =0 For i < d : f i ( A ) = f i ( B )

  23. Topological approach cdepth C = ( − 1) d � d � ( − 1) i � β i ( A ) i =0 � � d ( − 1) i � − β i ( B ) i =0

  24. Topological approach cdepth C = ( − 1) d � d � ( − 1) i � β i ( A ) i =0 � � d ( − 1) i � − β i ( B ) i =0

  25. Topological approach cdepth C = ( − 1) d � d � ( − 1) i � β i ( A ) i =0 � � d ( − 1) i � − β i ( B ) i =0 For i < d − 1: � β i ( A ) = � β i ( B )

  26. Topological approach cdepth C = ( − 1) d � ( − 1) d � β d ( A ) + ( − 1) d − 1 � β d − 1 ( A ) � − ( − 1) d � β d ( B ) − ( − 1) d − 1 � β d − 1 ( B )

  27. Topological approach cdepth C = ( − 1) d � ( − 1) d � β d ( A ) + ( − 1) d − 1 � β d − 1 ( A ) � − ( − 1) d � β d ( B ) − ( − 1) d − 1 � β d − 1 ( B )

  28. Topological approach cdepth C = � β d ( A ) − � β d − 1 ( A ) − � β d ( B ) + � β d − 1 ( B )

  29. Topological approach cdepth C = � β d ( A ) − � β d − 1 ( A ) − � β d ( B ) + � β d − 1 ( B )

  30. Topological approach cdepth C = � β d ( A ) − 0 − � β d ( B ) + � β d − 1 ( B )

  31. Topological approach cdepth C = � β d ( A ) − � β d ( B ) + � β d − 1 ( B )

  32. Topological approach cdepth C = � β d ( A ) − � β d ( B ) + � β d − 1 ( B )

  33. Topological approach � � � d − � β d ( B ) + � cdepth C = | C i | − 1 β d − 1 ( B ) i =0

  34. Topological approach � � � d − � β d ( B ) + � cdepth C = | C i | − 1 β d − 1 ( B ) i =0

  35. Topological approach � � � d − � β d ( B ) + � cdepth C = | C i | − 1 β d − 1 ( B ) i =0 Our main Lemma: � β d − 1 ( B ) = 1

  36. Topological approach � � � d − � cdepth C = | C i | − 1 β d ( B ) + 1 i =0

  37. Topological approach � � � d − � cdepth C = | C i | − 1 β d ( B ) + 1 i =0 � � � d ⇒ cdepth C ≤ | C i | − 1 + 1 i =0

  38. Main lemma Lemma � β d − 1 ( B ; Z 2 ) = 1 . Proof idea: 1 First show for a special configuration of points: 2 Use flips preserving � β d − 1 ( B ; Z 2 )

  39. Main lemma Lemma � β d − 1 ( B ; Z 2 ) = 1 . Proof idea: 1 First show for a special configuration of points: 2 Use flips preserving � β d − 1 ( B ; Z 2 )

  40. Main lemma Lemma � β d − 1 ( B ; Z 2 ) = 1 . Proof idea: 1 First show for a special configuration of points: 0 2 Use flips preserving � β d − 1 ( B ; Z 2 )

  41. Main lemma Lemma � β d − 1 ( B ; Z 2 ) = 1 . Proof idea: 1 First show for a special configuration of points: 0 2 Use flips preserving � β d − 1 ( B ; Z 2 )

  42. Further connections

  43. Further connections – normal surface theory • normal d -fan = collection of polyhedral cones

  44. Further connections – normal surface theory • normal d -fan = collection of polyhedral cones 1-fan, given by normals of a triangle

  45. Further connections – normal surface theory • normal d -fan = collection of polyhedral cones 1-fan, given by normals of a triangle

  46. Further connections – normal surface theory • normal d -fan = collection of polyhedral cones 2-fan; halfplanes = leafs

  47. Further connections – normal surface theory • normal d -fan = collection of polyhedral cones 2-fan; halfplanes = leafs • two (and more) normal d -fans ⇒ common refinement

  48. Further connections – normal surface theory • Setting: F 1 , . . . F d − 1 normal ( d − 1)-fans in general position with leafs L F i 1 , L F i 2 , L F i 3 i 1 ∩ . . . ∩ L F d − 1 common refinement = collection of rays L F 1 i d − 1 • Question: Max number of rays in the common refinement? • Conjecture (Burton’03): 1 + 2 d − 1

  49. Further connections – normal surface theory • Setting: F 1 , . . . F d − 1 normal ( d − 1)-fans in general position with leafs L F i 1 , L F i 2 , L F i 3 i 1 ∩ . . . ∩ L F d − 1 common refinement = collection of rays L F 1 i d − 1 • Question: Max number of rays in the common refinement? • Conjecture (Burton’03): 1 + 2 d − 1

  50. Further connections – normal surface theory • Setting: F 1 , . . . F d − 1 normal ( d − 1)-fans in general position with leafs L F i 1 , L F i 2 , L F i 3 i 1 ∩ . . . ∩ L F d − 1 common refinement = collection of rays L F 1 i d − 1 • Question: Max number of rays in the common refinement? • Conjecture (Burton’03): 1 + 2 d − 1

  51. Further connections – normal surface theory • P 1 , . . . , P k ⊂ R d be polytopes (not necessarily full dim) • Minkowski sum P 1 + P 2 + . . . + P k = { p 1 + p 2 + . . . + p k | p i ∈ P i } ⊆ R d

  52. Further connections – normal surface theory • P 1 , . . . , P k ⊂ R d be polytopes (not necessarily full dim) • Minkowski sum P 1 + P 2 + . . . + P k = { p 1 + p 2 + . . . + p k | p i ∈ P i } ⊆ R d + =

  53. Further connections – normal surface theory • P 1 , . . . , P k ⊂ R d be polytopes (not necessarily full dim) • Minkowski sum P 1 + P 2 + . . . + P k = { p 1 + p 2 + . . . + p k | p i ∈ P i } ⊆ R d + =

  54. Further connections – normal surface theory • P 1 , . . . , P k ⊂ R d be polytopes (not necessarily full dim) • Minkowski sum P 1 + P 2 + . . . + P k = { p 1 + p 2 + . . . + p k | p i ∈ P i } ⊆ R d

  55. Further connections – normal surface theory • Setting: F 1 , . . . F d − 1 normal ( d − 1)-fans in general position with leafs L F i 1 , L F i 2 , L F i 3 i 1 ∩ . . . ∩ L F d − 1 common refinement = collection of rays L F 1 i d − 1

  56. Further connections – normal surface theory • Setting: F 1 , . . . F d − 1 normal ( d − 1)-fans in general position with leafs L F i 1 , L F i 2 , L F i 3 i 1 ∩ . . . ∩ L F d − 1 common refinement = collection of rays L F 1 i d − 1 • Reformulation: number of rays = number of facets of Minkowski sum which correspond to a Minkow. sum of facets

  57. Further connections – normal surface theory • facets we are interested in = hitting simplices of the associated colorful Gale transform • ⇒ Deza’s bound 1 + � d − 1 i =1 ( | C i | − 1) becomes 1 + 2 d − 1 ⇒ Burton’s conjecture is true!!

  58. Proof idea

  59. Proof of Main Lemma: Initial configuration Lemma : � β d − 1 ( B , Z 2 ) = 1 • Let S ∋ 0 be a simplex with vertices v 0 , v 1 , . . . , v d . � � • ϕ ( C i ) = { v i , − v i , − 2 v i , − 3 v i . . . , − | C i | − 1 v i } . • B deformation retracts onto the ( d − 1)-dimensional sphere, hence � β d − 1 ( B ) = 1 .

  60. Proof of Main Lemma: Initial configuration Lemma : � β d − 1 ( B , Z 2 ) = 1 • Let S ∋ 0 be a simplex with vertices v 0 , v 1 , . . . , v d . � � • ϕ ( C i ) = { v i , − v i , − 2 v i , − 3 v i . . . , − | C i | − 1 v i } . • B deformation retracts onto the ( d − 1)-dimensional sphere, hence � β d − 1 ( B ) = 1 .

  61. Proof of Main Lemma: Initial configuration Lemma : � β d − 1 ( B , Z 2 ) = 1 • Let S ∋ 0 be a simplex with vertices v 0 , v 1 , . . . , v d . � � • ϕ ( C i ) = { v i , − v i , − 2 v i , − 3 v i . . . , − | C i | − 1 v i } . 0 • B deformation retracts onto the ( d − 1)-dimensional sphere, hence � β d − 1 ( B ) = 1 .

  62. Proof of Main Lemma: Initial configuration Lemma : � β d − 1 ( B , Z 2 ) = 1 • Let S ∋ 0 be a simplex with vertices v 0 , v 1 , . . . , v d . � � • ϕ ( C i ) = { v i , − v i , − 2 v i , − 3 v i . . . , − | C i | − 1 v i } . 0 • B deformation retracts onto the ( d − 1)-dimensional sphere, hence � β d − 1 ( B ) = 1 .

  63. Proof of Main Lemma: Flips Definition Let x ∈ C i be a point.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend