color magnetic flux tubes in dense matter
play

(Color-)magnetic flux tubes in dense matter A. Haber, A. Schmitt, - PowerPoint PPT Presentation

Barcelona, Jun 26, 2018 1 Andreas Schmitt Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom (Color-)magnetic flux tubes in dense matter A. Haber, A. Schmitt, PRD 95, 116016 (2017);


  1. Barcelona, Jun 26, 2018 1 Andreas Schmitt Mathematical Sciences and STAG Research Centre University of Southampton Southampton SO17 1BJ, United Kingdom (Color-)magnetic flux tubes in dense matter A. Haber, A. Schmitt, PRD 95, 116016 (2017); EPJ Web Conf. 137, 09003 (2017) A. Haber, A. Schmitt, JPG 45, 065001 (2018)

  2. Barcelona, Jun 26, 2018 2 Theoretical motivation • What’s the behavior of a multi-component superconductor regarding type-I/type-II? • What (color-)flux tubes are there in a non-abelian superconductor like color-flavor locked (CFL) quark matter? Phenomenological motivation Ω B • Do (color-)flux tubes support grav. waves ellipticities of neutron stars flux → gravitational waves? tubes? K. Glampedakis, D. I. Jones and L. Samuelsson, PRL 109, 081103 (2012) (besides magnetic forces, see also crystalline structures)

  3. Barcelona, Jun 26, 2018 3 Single-component superconductor • Ginzburg-Landau potential U for complex field φ with charge q coupled to gauge field A µ U = B 2 2 + | ( ∇ + iq A ) φ | 2 − µ 2 | φ | 2 + λ | φ | 4

  4. Barcelona, Jun 26, 2018 4 Reminder: type-I/type-II superconductivity flux tube condensate • Ginzburg-Landau parameter ξ κ = λ magnetic field B λ ξ radius Η c2 normal • type-II superconductivity Η c √ flux tubes for κ > 1 / 2: flux tube lattice H Meissner for H c 1 < H < H c 2 Η c1 κ A.A. Abrikosov, Soviet Physics JETP 5, 1174 (1957)

  5. Barcelona, Jun 26, 2018 5 Multi-component superconductors (page 1/2) • two fields with charges q 1 , q 2 (neutron/proton: q 1 = 2 e , q 2 = 0) U = B 2 � i | φ i | 2 + λ i | φ i | 4 � � | ( ∇ + iq i A ) φ i | 2 − µ 2 + 2 h | φ 1 | 2 | φ 2 | 2 2 + i =1 , 2 • fields are coupled indirectly via gauge field (if both q 1 , q 2 � = 0) and directly with coupling h (neutron/proton system: additional derivative coupling A. Haber, A. Schmitt, PRD 95, 116016 (2017) )

  6. Barcelona, Jun 26, 2018 6 Multi-component superconductors (page 2/2) • more fields and multiple (color-)gauge fields 3 U = B 2 2 + B 2 � | ( ∇ + iq i 1 A 1 + iq i 2 A 2 ) φ i | 2 − µ 2 | φ i | 2 + λ | φ i | 4 � � 1 2 2 + i =1 − 2 h ( | φ 1 | 2 | φ 2 | 2 + | φ 1 | 2 | φ 3 | 2 + | φ 2 | 2 | φ 3 | 2 ) • color superconductor: 3 scalar components and 3 gauge fields: 1 electromagnetic and 2 color fields

  7. Barcelona, Jun 26, 2018 7 Two-component superconductors in neutron star cores T c inner crust core core neutron (singlet) H outer crust c2 T c proton H H c1 c κ = 1/2 neutron (triplet) 2 density density • density-dependent κ • type-I/type-II transition in the core? • effect of coupling to superfluid on type-I/type-II transition?

  8. Barcelona, Jun 26, 2018 8 Critical magnetic fields in a two-component system • compute flux tube profiles and flux tube interaction → attractive long-distance interaction in type-II regime isolated superconductor superconductor coupled to a superfluid H c2 H c2 H c2 ' H c2 ' H c2 H c flux tubes flux tubes H c flux tubes H c ' H c1 ' H c1 H c1 H c1 H c1 H ν small- approximation complete solution κ (our calculation) (conjecture) numerical calculation supports conjecture A. Haber, D. M¨ uller, preliminary results • first-order phase transition allows for flux tube clusters see also ”type-1.5” superconductors J. Carlstr¨ om, J. Garaud, E. Babaev, PRB 84, 134515 (2011)

  9. Barcelona, Jun 26, 2018 9 Ginzburg-Landau potential for color superconductors U = − Tr[( D µ Φ) † ( D µ Φ)] + a Tr[Φ † Φ] + b Tr[(Φ † Φ) 2 ] + c (Tr[Φ † Φ]) 2 +1 + 1 4 F a µν F µν 4 F µν F µν a       φ 0 0 0 0 0 φ 1 ( � r ) 0 0 Φ = 0 φ 0 0 0 0 0 φ 2 ( � r ) 0       0 0 φ 0 0 φ φ 3 ( � r ) 0 0 CFL 2SC ansatz for flux tubes Color-flavor locked (CFL) phase 2SC phase paired: unpaired: s d u s d s d u d s d u u s u d u s

  10. Barcelona, Jun 26, 2018 10 Mixing of gluons and photons in CFL • symmetry breaking pattern of CFL [ SU (3)] c × SU (3) L × SU (3) R × U (1) B → SU (3) c + L + R × Z 2 � �� � � �� � ⊃ [ U (1)] Q ⊃ [ U (1)] ˜ Q • CFL is a superfluid → rotational vortices • Meissner effect for gluons T 1 , . . . , T 7 (”color superconductor”) • all Cooper pairs neutral under ˜ Q = Q + 2 √ 3 T 8 and (differently) charged under orthogonal combination ˜ T 8 – ˜ Q -magnetic field penetrates CFL – Meissner effect for ˜ T 8 -magnetic field (Analogous to gauge field mixing in standard model, [ SU (2)] × [ U (1)] → [ U (1)] Q )

  11. Barcelona, Jun 26, 2018 11 Ginzburg-Landau potential with rotated gauge fields ˜ ˜ B 2 2 + B 2 B 2 � � � � � ∇ + ig � � ∇ − ig � 2 2 g 8 ˜ g 8 ˜ 3 8 � � � � U = 2 + 2 + 2 A 3 + i ˜ A 8 φ 1 + 2 A 3 + i ˜ A 8 φ 2 � � � � � 2 − µ 2 ( | φ 1 | 2 + | φ 2 | 2 + | φ 3 | 2 ) + λ ( | φ 1 | 4 + | φ 2 | 4 + | φ 3 | 4 ) � � �� � g 8 ˜ + ∇ − 2 i ˜ A 8 φ 3 − 2 h ( | φ 1 | 2 | φ 2 | 2 + | φ 1 | 2 | φ 3 | 2 + | φ 2 | 2 | φ 3 | 2 ) • approximations – massless quarks, m s = m d = m u = 0 – purely bosonic approach → neglect effects of magnetic field on Cooper pair constituents – Ginzburg-Landau parameters µ, λ, h : (mostly) use perturbative results and extrapolate down in density (= to large couplings)

  12. Barcelona, Jun 26, 2018 12 Ginzburg-Landau potential with rotated gauge fields ˜ ˜ B 2 2 + B 2 B 2 � � � � � ∇ + ig � � ∇ − ig � 2 2 g 8 ˜ g 8 ˜ 3 8 � � � � U = 2 + 2 + 2 A 3 + i ˜ A 8 φ 1 + 2 A 3 + i ˜ A 8 φ 2 � � � � � 2 − µ 2 ( | φ 1 | 2 + | φ 2 | 2 + | φ 3 | 2 ) + λ ( | φ 1 | 4 + | φ 2 | 4 + | φ 3 | 4 ) � � �� � g 8 ˜ + ∇ − 2 i ˜ A 8 φ 3 − 2 h ( | φ 1 | 2 | φ 2 | 2 + | φ 1 | 2 | φ 3 | 2 + | φ 2 | 2 | φ 3 | 2 ) • ansatz for flux tube solutions φ i ( r, θ ) = ρ i ( r ) e in i θ with winding numbers n 1 , n 2 , n 3 • solve equations of motion for ρ 1 , ρ 2 , ρ 3 , A 3 , ˜ A 8 • boundary conditions: homogeneous CFL far away from flux tube, ρ i = 0 in center if winding n i is nonzero

  13. Barcelona, Jun 26, 2018 13 � • usually: vortex → baryon circulation Γ = d ℓ · v � flux tube → magnetic flux Φ = d ℓ · A • CFL line defects can have both! ˜ Γ ∝ n 1 + n 2 + n 3 , Φ 3 ∝ n 1 − n 2 , Φ 8 ∝ n 1 + n 2 − 2 n 3 ( n 1 , n 2 , n 3 ) Γ [ π/ 3 µ q ] Φ 3 [ π/g ] ˜ CFL line defects Φ 8 [ π/ ˜ g 8 ] Global vortex ( n, n, n ) − n 0 0 Forbes, Zhitnitsky (2002) − n 2 n ”Semi-superfluid” vortex (0 , 0 , n ) 0 3 3 Balachandran, Digal, Matsuura (2006) Magnetic flux tube T 112 ( n, n, − 2 n ) 0 0 − 2 n Iida (2005) Magnetic flux tube T 101 ( n, 0 , − n ) 0 − n − n Haber, Schmitt (2018)

  14. Barcelona, Jun 26, 2018 14 • vortices (Γ � = 0): ”topological” since π 1 [ U (1)] = Z – global vortex decays into 3 semi-superfluid vortices M. G. Alford, S. K. Mallavarapu, T. Vachaspati and A. Windisch, PRC 93, 045801 (2016) • flux tubes (Γ = 0): ”non-topological” since π 1 [ SU (3)] = 0 – stabilized through external magnetic field → see rest of the talk ( n 1 , n 2 , n 3 ) Γ [ π/ 3 µ q ] Φ 3 [ π/g ] ˜ CFL line defects Φ 8 [ π/ ˜ g 8 ] Global vortex ( n, n, n ) − n 0 0 Forbes, Zhitnitsky (2002) − n 2 n ”Semi-superfluid” vortex (0 , 0 , n ) 0 3 3 Balachandran, Digal, Matsuura (2006) Magnetic flux tube T 112 ( n, n, − 2 n ) 0 0 − 2 n Iida (2005) Magnetic flux tube T 101 ( n, 0 , − n ) 0 − n − n Haber, Schmitt (2018)

  15. Barcelona, Jun 26, 2018 15 Flux tube profiles 1.4 1.4 T 112 T 101 f 2 1.2 1.2 f 1 = f 2 1.0 1.0 f 3 f 1 f 3 0.8 0.8 0.6 0.6 ˜ B 0.4 0.4 8 ˜ B B 3 0.2 0.2 8 0.0 0.0 0 2 4 6 8 10 0 2 4 6 8 10 R R • flux tube with ”2SC core” • flux tube with ”unpaired core” A. Haber, A. Schmitt, JPG 45, 065001 (2018) K. Iida, PRD 71, 054011 (2005) • additional B 3 field (cost in free energy) • non-vanishing condensate in core (gain in free energy)

  16. Barcelona, Jun 26, 2018 16 Phase structure without flux tubes 3.0 2.5 unpaired 2SC 2.0 H [ μ 2 / λ 1 / 2 ] 1.5 1.0 0.5 CFL h / λ =- 0.5 0.0 0.0 0.2 0.4 0.6 0.8 1.0 strong coupling constant g • in weak coupling: h/λ = − 0 . 5 • CFL superseded by 2SC except for small values of strong coupling constant g (even though here m s ≃ 0!) • in neutron stars µ q ≃ 400 MeV ⇒ g ≃ 3 . 5

  17. Barcelona, Jun 26, 2018 17 Phase diagram including flux tubes H c2 unpaired 15 H c2 H c H [ μ 2 / λ 1 / 2 ] H c1 ( S 1 ) H 2SC 10 c1 ( D ) H c H c1 ( T 112 ) 5 CFL H c1 ( T 101 ) 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 T c / μ q • type-II regime for sufficiently large T c /µ q (neutron stars: T c /µ q ∼ (10 − 100) / (400 − 500) ∼ 0 . 1) • type-I/type-II transition complicated (multi-component structure!)

  18. Barcelona, Jun 26, 2018 18 Phase diagram including flux tubes H c2 unpaired 15 H c2 H c H [ μ 2 / λ 1 / 2 ] H c1 ( S 1 ) H 2SC 10 c1 ( D ) H c H c1 ( T 112 ) 5 CFL H c1 ( T 101 ) 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 T c / μ q • CFL flux tubes with 2SC core ( T 101 ) preferred • critical fields H ∼ 10 19 G ≫ H NS , however: creation of flux tubes through cooling into superconducting phase? • 2SC domain walls ( D ) preferred over ordinary 2SC flux tubes ( T 1 ) for sufficiently large T c /µ q

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend