collective modes at a disordered quantum phase transition
play

Collective modes at a disordered quantum phase transition Thomas - PowerPoint PPT Presentation

Collective modes at a disordered quantum phase transition Thomas Vojta Department of Physics, Missouri University of Science and Technology Los Alamos, January 27, 2020 Outline Collective modes: Goldstone and amplitude (Higgs)


  1. Collective modes at a disordered quantum phase transition Thomas Vojta Department of Physics, Missouri University of Science and Technology Los Alamos, January 27, 2020

  2. Outline • Collective modes: Goldstone and amplitude (Higgs) • Superfluid-Mott glass quantum phase transition • Fate of the collective modes at the Martin Puschmann superfluid-Mott glass transition Jose Hoyos • Conclusions Jack Crewse Cameron Lerch

  3. Spontaneous symmetry breaking Does a symmetric Hamiltonian imply a symmetric equilibrium state? • world of this pencil is completely isotropic, all directions are equal • symmetry is lost when pencil falls over, now only one direction holds • state of lowest energy has lower symmetry than system Rotational symmetry has been broken spontaneously!

  4. Broken symmetries and collective modes • systems with broken continuous symmetry : − planar magnet breaks O(2) rotation symmetry − superfluid wave function breaks U(1) symmetry • Higgs (amplitude) mode : corresponds to fluctuations of order parameter amplitude • Goldstone (phase) mode : corresponds to fluctuations of order parameter phase • Amplitude mode is condensed matter analogue of famous Higgs boson Goldstone theorem: ”Mexican hat” potential for order When a continuous symmetry is spontaneously parameter in symmetry-broken phase broken, massless Goldstone modes appear. F = t m 2 + u m 4

  5. Higgs (amplitude) mode in condensed matter? • Is the Higgs mode a sharp, particle-like excitation or is it overdamped because it decays into other modes? Raman scattering data for NbSe 2 [from Measson et.al., Phys. Rev. B 89 , 060503 (2014)]

  6. What is the fate of the Goldstone and Higgs modes near a disordered quantum phase transition?

  7. • Collective modes: Goldstone and Higgs • Superfluid-Mott glass quantum phase transition • Fate of the collective modes at the superfluid-Mott glass transition • Conclusions

  8. Disordered interacting bosons Ultracold atoms in optical potentials: • disorder: speckle laser field • interactions: tuned by Feshbach resonance and/or density F. Jendrzejewski et al., Nature Physics 8, 398 (2012) 1.0 Disordered superconducting films: 3 0.8 G(V)/G(4mV) 0.6 • energy gap in insulating as well as (V) 0.4 H=11T 0.2 2 superconducting phase 0.0 (V)/G -4 -3 -2 -1 0 1 2 3 4 V(mV) • preformed Cooper pairs ⇒ superconducting H=0 1 transition is bosonic G -2 -1 0 1 2 3 4 V(mV) Sherman et al., Phys. Rev. Lett. 108, 177006 (2012)

  9. Disordered interacting bosons Bosonic quasiparticles in doped quantum magnets: Yu et al., Nature 489, 379 (2012) • bromine-doped dichloro-tetrakis-thiourea-nickel (DTN) • coupled antiferromagnetic chains of S = 1 Ni 2+ ions • S = 1 spin states can be mapped onto bosonic states with n = m s + 1

  10. Bose-Hubbard model Bose-Hubbard Hamiltonian in two dimensions: H = U n i ) 2 − J ij ( a † � � (ˆ n i − ¯ i a j + h.c. ) 2 i � i,j � • superfluid ground state if Josephson couplings J ij dominate • insulating ground state if charging energy U dominates • chemical potential µ i = U ¯ n i Particle-hole symmetry: • large integer filling ¯ n i = k with integer k ≫ 1 ⇒ Hamiltonian invariant under ( ˆ n i − ¯ n i ) → − (ˆ n i − ¯ n i )

  11. Phase diagrams (b) (c) (a) ~ µ ~ ~ µ /U µ /U /U 0 0 0 3 _ _ 3 3 _ SF SF SF 2 2 2 MI MI <n>=1 <n>=1 MI <n>=1 1 n=1 1 1 n=1 +δ n=1 1 _ ~ ~ (µ) µ ( ) 2 J J 0 1 _ ______ 1 _ 1 _ 0,c − δ + ______ BG BG MG − + 2 U 2 2 U 0 0 −δ 1 _ MI MI MI <n>=0 2 <n>=0 <n>=0 0 0 0 J /U 0 J J /U 0 n=0 /U n=0 0 0 0 n=0 0 ~ (µ) J 0,c −1 _ 1 _ −1 _ ________ − SF BG BG SF (1+δ ) 2 2 2 U + 0 −1 MI MI <n>=−1 MI <n>=−1 <n>=−1 −1 −1 n=−1 n=−1 n=−1 SF 3 3 −3 _ _ _ − −2 2 2 clean random potentials random couplings Weichman et al., Phys. Rev. B 7, 214516 (2008)

  12. Stability of clean quantum critical point against dilution Site dilution: • randomly remove a fraction p of lattice sites • superfluid phase possible for 0 ≤ p ≤ p c (percolation threshold) Harris criterion: • for dilution p = 0 , quantum critical point is in 3D XY universality class • correlation length critical exponent ν ≈ 0 . 6717 • clean ν violates Harris criterion dν > 2 with d = 2 ⇒ clean critical behavior unstable against disorder (dilution) Critical behavior of superfluid-Mott glass transition must be in new universality class

  13. Monte Carlo simulations • large-scale Monte Carlo simulations in 2d and 3d quantum fluctuations (~U/J) • conventional power-law critical behavior • universal critical exponents for dilutions 0 < p < p c • Griffiths singularities exponentially weak ( see classification in J. Phys. A 39 , R143 (2006), PRL 112 , 075702 (2014) ) (3+1)D exponents (2+1)D exponents exponent clean disordered exponent clean disordered z 1 1.52 z 1 1.67 ν 0.5 0.90 ν 0.6717 1.16 β/ν 1 1.09 β/ν 0.518 0.48 γ/ν 2 2.50 γ/ν 1.96 2.52

  14. • Collective modes: Goldstone and amplitude (Higgs) • Superfluid-Mott glass quantum phase transition • Fate of the collective modes at the superfluid-Mott glass transition • Conclusions

  15. Amplitude mode: scalar susceptibility • parameterize order parameter fluctuations into amplitude and direction � φ = φ 0 (1 + ρ )ˆ n • Amplitude mode is associated with scalar susceptibility χ ρρ ( � x, t ) = i Θ( t ) � [ ρ ( � x, t ) , ρ (0 , 0)] � • Monte-Carlo simulations compute imaginary time correlation function χ ρρ ( � x, τ ) = � ρ ( � x, τ ) ρ (0 , 0) � • Wick rotation required: analytical continuation from imaginary to real times/frequencies ⇒ maximum entropy method

  16. Analytic continuation - maximum entropy method • Matsubara susceptibility χ ρρ ( iω m ) vs. spectral function A ( ω ) = χ ′′ ρρ ( ω ) /π � ∞ 2 ω χ ρρ ( iω m ) = dωA ( ω ) . ω 2 m + ω 2 0 Maximum entropy method: • inversion is ill-posed problem, highly sensitive to noise • fit A ( ω ) to χ ρρ ( iω m ) MC data by minimizing 2 σ 2 − αS Q = 1 • parameter α balances between fit error σ 2 L-curve 10 5 and entropy S of A ( ω ) , i.e., between fitting 10 4 information and noise σ 2 10 3 • best α value chosen by L-curve method [see 10 2 Bergeron et al., PRE 94, 023303 (2016)] 10 1 4 6 8 10 12 14 16 ln α

  17. Amplitude mode in clean undiluted system χ ρρ ( ω ) = | r | 3 ν − 2 X ( ω | r | − ν ) Scaling form of the scalar susceptibility: [Podolsky + Sachdev, PRB 86, 054508 (2012)] 0.14 1 ν=0.664 0.12 0.5 0.1 ω Η 0.08 A( ω ) = |r | 0.0909 0.2 0.06 0.0682 0.0545 0.0474 0.04 0.0363 0.01 0.03 0.1 0.0272 r 0.0181 0.02 0.0090 0.0045 0 0 0.5 1 1.5 2 2.5 3 ω • sharp Higgs peak in spectral function • Higgs energy (mass) ω H scales as expected with distance from criticality r

  18. Dispersion of the clean amplitude mode 0.125 q= 0 0.05 0.1 0.1 0.25 0.49 0.98 1.96 0.075 A( ω ) 0.05 0.025 0 0 1 2 3 4 ω spectral density at different q for Higgs mode dispersion r = − 0 . 0045

  19. Amplitude mode in disordered system dilution p=1/3 0.05 0.04 | r |= 0.2391 0.03 A( ω ) 0.1756 0.1439 0.1122 0.02 0.0805 0.0488 0.0330 0.01 0.0171 0.0013 0 0 0.5 1 1.5 2 2.5 3 ω • spectral function shows broad peak near ω = 1 • peak is noncritical: does not move as quantum critical point is approached • amplitude fluctuations not soft at criticality • violates expected scaling form χ ρρ ( ω ) = | r | ( d + z ) ν − 2 X ( ω | r | − zν )

  20. What is the reason for the absence of a sharp amplitude mode at the superfluid-Mott glass transition?

  21. Quantum mean-field theory H = U n i ) 2 − J � � ǫ i ǫ j ( a † ǫ i (ˆ n i − ¯ i a j + h.c. ) 2 i � i,j � • truncate Hilbert space: keep only states | ¯ n − 1 � , | ¯ n � , and | ¯ n + 1 � on each site Variational wave function: � 1 � � θ i � � θ i �� � � e iφ i | ¯ n + 1 � i + e − iφ i | ¯ � | Ψ MF � = | g i � = cos | ¯ n � i + sin √ n − 1 � i 2 2 2 i i • locally interpolates between Mott insulator, θ = 0 , and superfluid limit, θ = π/ 2 Mean-field energy: � θ i � E 0 = � Ψ MF | H | Ψ MF � = U � ǫ i sin 2 � − J ǫ i ǫ j sin( θ i ) sin( θ j ) cos( φ i − φ j ) 2 2 i � ij � • solved by minimizing E 0 w.r.t. θ i ⇒ coupled nonlinear equations

  22. m Diluted lattice: order parameter • local order parameter: m i = � a i � = sin( θ i ) e iφ i (dilution p = 1 / 3 ) 0.6 typical mean 0.4 U = 12 U = 14 U = 8 U = 10 0.0 0.2 0.4 0.6 0.8 1.0 mi 0.2 0.0 7 8 9 10 11 12 13 14 U

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend