coherent rho 0 production in neutrino neutral current
play

Coherent-Rho 0 Production in Neutrino Neutral-Current Interactions - PowerPoint PPT Presentation

Coherent-Rho 0 Production in Neutrino Neutral-Current Interactions A 0 A Chris Kullenberg Sanjib R. Mishra July 7, 2015 Coh 0 Production Kullenberg, Mishra July 7, 2015 1 / 52 A A Neutrino-Induced


  1. Coherent-Rho 0 Production in Neutrino Neutral-Current Interactions ν µ A ֌ ν µ ρ 0 A Chris Kullenberg Sanjib R. Mishra July 7, 2015 Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 1 / 52

  2. ν µ A ֌ µ ρ A Neutrino-Induced Coherent Rho Production: µ ( l ′ ) ν µ ( l ) ∗ Structure of Weak-Current and its W + Hadronic-Content: u ¯ ρ + d Piketty-Stodolsky Model ⇒ CVC Vector meson Dominance (VMD) P A ( p ′ ) A ( p ) d 3 σ � ν µ A → µ − ρ + A � � 2 = G 2 f 2 � � d σ T ( ρ + A → ρ + A ) � | q | Q F ρ (1 + ǫ R ) Q 2 + m 2 dQ 2 d ν dt 4 π 2 1 − ǫ E 2 dt ν ρ where G F is the weak coupling constant, Q 2 = − q 2 = − ( k − k ′ ) 2 , ν = E ν − E µ , the 4 E ν E µ − Q 2 4 E ν E µ + Q 2 +2 ν 2 , and R = d σ L / dt polarization parameter ǫ = d σ T / dt with σ L and σ T as the longitudinal and transverse ρ -nucleus cross-sections. f ρ is the coupling constant of the ρ meson to the W boson. Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 2 / 52

  3. Coherent- ρ 0 -vs- Coherent- ρ + : ∗ Coherent ρ ± observed by E546, E632, SKAT, and BEBC Precision of ± 25–30% ∗ Measurement of Coherent- ρ 0 has never been reported. Inclusive- ρ 0 has been measured: the most precise measurement is by NOMAD ( Nucl. Phys. B601 , 3[2001] ) ∗ Simple relation between Coherent ρ 0 & Coherent ρ ± ֌ d 3 σ ( ν µ A → ν µ ρ 0 A ) d 3 σ ( ν µ A → µ − ρ + A ) � � = 1 � 2 1 − 2 sin 2 θ W � dQ 2 d ν dt dQ 2 d ν dt 2 ⇒ σ ( Coherent- ρ 0 ) ∼ = 0.15 × σ ( Coherent- ρ + ) Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 3 / 52

  4. Conditions for Coherent Events: ∗ Wavelength of exchange particle compatible with entire nucleus (diffractive, low Q 2 ) ∗ Nucleus recoils as a whole ∗ Nucleus remains in ground state ∗ No transfer of quantum numbers ∗ Generally very forward mesons Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 4 / 52

  5. The NOMAD Detector ∗ High resolution tracking ∗ Fine-grained calorimeter ∗ Unambiguous charge separation Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 5 / 52

  6. Signal ∗ π − π + with little else ( ππ ) vector ( P , θ ) consistent with Coherent- ρ 0 such that ζ ππ = E V 0 ∗ (1 − cos θ V 0 ) ≤ Cut (0.075) Background [1] NC-induced (NC-DIS) background ⇒ 2-Track (+,-) [2] CC-induced (CC-DIS) background ⇒ 2-Track (+,-) where ”-” is a µ − w/o µ ID SPACER ⇒ K 0 s from outside-interactions [3] Outside-Background (OBG) Control Sample: CC Data Simulator Correction ∗ ν µ -CC events where the µ − identified and then ’removed’; the remaining hadronic (+,-) tracks subjected to the analysis. Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 6 / 52

  7. What we are looking for: π − π + Coherent- ρ 0 Candidate Event P π + =3.1; P π − =2.3 (GeV) M ππ = 0.74 GeV ζ ππ = 0.008 Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 7 / 52

  8. E ππ Number of Events ⇒ E ππ ≥ 2 GeV 0.05 NC-DIS 0.04 0.03 ✟ ✙ ✟ CC-DIS 0.02 Coh ρ 0 0.01 0 0 2 4 6 8 10 12 14 16 18 20 E ππ (GeV) (200MeV) Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 8 / 52

  9. φ ππ Number of Events 0.12 CC-DIS 0.1 20 0 ≤ φ ππ ≤ 160 0 ⇒ ⇐ 0.08 0.06 NC-DIS Coh ρ 0 0.04 0.02 0 0 20 40 60 80 100 120 140 160 180 Φ π +- (Deg) Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 9 / 52

  10. Analysis of Coherent ρ 0 : Kinematic Shape Comparison Number of Events Number of Events ζ ππ M ππ 0.14 0.3 Coh ρ 0 OBG K 0 s 0.12 0.25 ✻ 0.1 0.2 0 . 075 ✛ ✲ ∼ 85% of ρ 0 0.08 0.15 0.06 0.1 0.04 NC-DIS 0.05 ✁ 0.02 ☛ ✁ ✟ CC-DIS ✟ ✟ ✙ ✟ 0 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 M ππ (GeV/c 2 ) 30MeV ζ ππ 0.6 ≤ M ππ ≤ 1.0 ζππ ( ) Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 10 / 52

  11. Coherent- ρ 0 Analysis: ∗ 2-Track ( π + π − ) Events in Fiducial Volume w/o µ -ID passing kinematic preselection cuts ∗ Calibrate OBG ⇒ 2-Track events with vertex outside ⇒ Normalize it to the K 0 peak ∗ Calibrate the shape of NC-DIS The most important variable is the shape of ζ ππ ⇒ Use CC-DS (3-&-4 Track events w. µ ); ⇒ The π + π − subjected to the standard selection ⇒ Obtain a MC(NC-DIS) Re-Weight based on Data/MC [ P π ± , P t π ± , M ππ , ζ ππ ] ∗ Normalize NCDIS (shapes reweighted using Data-Simulator) ⇒ Use φ ππ distribution with ζ ππ > 0 . 075 ∗ Result ⇒ Plot M ππ ; impose 0 . 6 ≤ M ππ ≤ 1 . 0 GeV ⇒ Using ζ ππ , fit for Coh ρ using ≤ 0 . 1 region ⇒ Check CC-DIS normalization ⇒ Systematic error analysis Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 11 / 52

  12. Shape of NC-DIS used in Coherent ρ 0 Analysis: CC Data-Simulator E ππ 1400 1200 ∗ ν µ -CC with µ − π + π − 1000 Weighted MC Un-weighted MC ∗ DIS weight based upon: 800 [ P π ± , P t π ± , M ππ , ζ ππ ] ⇒ 600 400 200 0 0 2 4 6 8 10 12 14 16 18 20 E ππ E ππ E ππ Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 12 / 52

  13. M ππ 1400 1200 Weighted MC 1000 Un-weighted MC 800 600 400 200 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 M ππ M ππ M ππ Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 13 / 52

  14. ζ ππ 0 . 6 ≤ M ππ ≤ 1 . 0 2250 1000 2000 1750 800 Weighted MC Un-weighted MC Signal ⇒ 1500 600 1250 1000 400 750 500 200 250 0 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ζ ππ ζ ππ ζ ππ ζ ππ (0.6 ≤ M ππ ≤ 1.0) ζ ππ (0.6 ≤ M ππ ≤ 1.0) ζ ππ (0.6 ≤ M ππ ≤ 1.0) Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 14 / 52

  15. Preselection NC-DIS ( ∼ x4 Data) 0.44M ֌ CC-DIS ( ∼ x4 Data) 1.44M ֌ Coh π + 10k ֌ Coh ρ 0 1,000 ֌ ∗ Fiducial Cut, Muon-Veto, 2-Tracks Sample #-Events NC-DIS ( ∼ x4) 18 , 400 CC-DIS ( ∼ x4) 4 , 600 Data 39 , 500 Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 15 / 52

  16. Selection ∗ ’Other’ includes QE, Res, Coh π + , Coh π 0 ∗ Vetos: DC-Veto/tube, Upstream-hanger, V 0 -from-vertex Coh ρ 0 ∗ Selection NC-DIS ∗ CC-DIS ∗ OBG Other Total Data Veto/UpHanger 10 , 262 2 , 498 1 , 520 526 395 15 , 202 15 , 850 Photon Veto 6 , 846 1 , 506 359 260 368 9 , 339 9 , 490 20 0 ≤ φ ππ ≤ 160 0 5 , 321 870 255 104 305 6 , 854 6 , 852 Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 16 / 52

  17. Normalization of NC Background Number of Events χ 2 500 1 . 043 ± 0 . 023 400 300 NCDIS-Norm 200 ∗ Coh ρ 0 MC 100 ∗ NC-MC Bkg(DS-Wt) ∗ CC-MC Bkg ∗ OBG-K 0 s Bkg 0 0 20 40 60 80 100 120 140 160 180 Φ π +- (Deg) ζππ> 0.075 Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 17 / 52

  18. 0 . 6 ≤ M ππ ≤ 1 . 0 Number of Events 700 Number of Events 300 ∗ Coh ρ 0 MC (669 ± 116 evts) CC-Data 1000 ∗ NC-MC Bkg(DS-Weighted) ∗ CC-MC Bkg 600 ∗ OBG-K 0 s Bkg 250 800 Coh ρ 0 500 ✟ ✟ ✙ 600 200 χ 2 400 400 150 0 . 669 ± 0 . 116 200 300 (17 . 3%) ✄ ✗ 0 100 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ζ ππ (0.6 ≤ M ππ ≤ 1.0) ζ ππ (0.6 ≤ M ππ ≤ 1.0) ζ ππ (0.6 ≤ M ππ ≤ 1.0) ✄ Normalization (Coh ρ 0 ) 200 NC-MC CC-MC ✁ Total BKG 50 ✁ ☛ 100 ✁ ☛ ✁ OBG-K 0 ✟ ✙ ✟ 0 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 ζ ππ ζ ππ 0.6 ≤ M ππ ≤ 1.0 Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 18 / 52

  19. Coherent Region: ζ ≤ 0 . 075 non-Coherent Region: ζ > 0 . 075 Number of Events Number of Events 250 ∗ Coh ρ 0 MC 180 ∗ NC-MC Bkg(DS-Weighted) ∗ CC-MC Bkg 160 ∗ OBG-K 0 s Bkg 200 140 120 150 100 80 100 60 40 50 20 0 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 M ππ (GeV/c 2 ) ζππ≤ 0.075 M ππ (GeV/c 2 ) ζππ> 0.075 Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 19 / 52

  20. Systematic Error ⇒ ∗ Data-Simulator: (Shape of ζ in NC-DIS) Using only ζ -Wt (which does not describe the ππ system in CC-data well) ⇒ ± 0 . 072 ( 10 . 8 %) ================================ ∗ NC-DIS: Using ± 2 . 3% variation (constrained by φ ππ in the background region) ⇒ ± 0 . 048 ( 7 . 17 %) ∗ CC-DIS: ⇒ ± 0 . 015 ( 2 . 24 %) Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 20 / 52

  21. Systematic Error ⇒ ∗ OBG ( K 0 ): With 833 data events used to simulate the OBG, a 3 . 5% variation in its normalization had a negligible effect on the Coh ρ 0 normalization. ⇒ ± 0 . 000 ( 0 . 0 %) ∗ Total Systematic Error: ⇒ ± 0 . 088 ( 13 . 2 %) ∗ Total Error: ⇒ 0 . 669 ± 0 . 116 ± 0 . 088 ( ± 21 . 8 %) Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 21 / 52

  22. ν µ A ֌ ν µ ρ 0 A Conclusion ⇒ ∗ We have conducted a measurement of Coherent- ρ 0 production. A clear signal of Coherent- ρ 0 is observed. ∗ The analysis is data-driven; the backgrounds are constrained using control samples. ∗ We observe: 669 ± 116 ( Stat . ) ± 88 ( Syst . ) fully corrected Coherent- ρ 0 events. ∗ The rate with respect to -CC events ( 1 . 44 ∗ 10 6 ) is: ( 4 . 65 ± 1 . 01 ) ∗ 10 − 4 Coh ρ 0 Production Kullenberg, Mishra July 7, 2015 22 / 52

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend