coherence modulo and double groupoids
play

Coherence modulo and double groupoids Benjamin Dupont Institut - PowerPoint PPT Presentation

Coherence modulo and double groupoids Benjamin Dupont Institut Camille Jordan, Universit Lyon 1 joint work with Philippe Malbos Category Theory 2019 Edinburgh, 11 July 2019 Plan I. Introduction and motivations II. Double groupoids III.


  1. Double groupoids ◮ We introduce a cubical notion of coherence, in n -categories enriched in double groupoids. ◮ A double category is an internal category ( C 1 , C 0 , ∂ C − , ∂ C + , ◦ C , i C ) in Cat, Ehresmann ’64.

  2. Double groupoids ◮ We introduce a cubical notion of coherence, in n -categories enriched in double groupoids. ◮ A double category is an internal category ( C 1 , C 0 , ∂ C − , ∂ C + , ◦ C , i C ) in Cat, Ehresmann ’64. ( C 0 ) 0

  3. Double groupoids ◮ We introduce a cubical notion of coherence, in n -categories enriched in double groupoids. ◮ A double category is an internal category ( C 1 , C 0 , ∂ C − , ∂ C + , ◦ C , i C ) in Cat, Ehresmann ’64. ( C 0 ) 0 ( C 0 ) 1 � ( C 0 ) 0

  4. � Double groupoids ◮ We introduce a cubical notion of coherence, in n -categories enriched in double groupoids. ◮ A double category is an internal category ( C 1 , C 0 , ∂ C − , ∂ C + , ◦ C , i C ) in Cat, Ehresmann ’64. ( C 0 ) 0 ( C 0 ) 0 ( C 0 ) 1 � ( C 0 ) 1 ( C 0 ) 0 ( C 0 ) 0

  5. � Double groupoids ◮ We introduce a cubical notion of coherence, in n -categories enriched in double groupoids. ◮ A double category is an internal category ( C 1 , C 0 , ∂ C − , ∂ C + , ◦ C , i C ) in Cat, Ehresmann ’64. ( C 1 ) 0 � ( C 0 ) 0 ( C 0 ) 0 ( C 0 ) 1 � ( C 0 ) 1 � ( C 0 ) 0 ( C 0 ) 0 ( C 1 ) 0

  6. � � Double groupoids ◮ We introduce a cubical notion of coherence, in n -categories enriched in double groupoids. ◮ A double category is an internal category ( C 1 , C 0 , ∂ C − , ∂ C + , ◦ C , i C ) in Cat, Ehresmann ’64. ( C 1 ) 0 � ( C 0 ) 0 ( C 0 ) 0 ( C 0 ) 1 � ( C 1 ) 1 ( C 0 ) 1 � ( C 0 ) 0 ( C 0 ) 0 ( C 1 ) 0

  7. � � Double groupoids ◮ We introduce a cubical notion of coherence, in n -categories enriched in double groupoids. ◮ A double category is an internal category ( C 1 , C 0 , ∂ C − , ∂ C + , ◦ C , i C ) in Cat, Ehresmann ’64. ( C 1 ) 0 � ( C 0 ) 0 ( C 0 ) 0 ( C 0 ) 1 � ( C 1 ) 1 ( C 0 ) 1 � ( C 0 ) 0 ( C 0 ) 0 ( C 1 ) 0 ◮ It gives four related categories C vo := ( C v , C o , ∂ v C ho := ( C h , C o , ∂ h − , 0 , ∂ v + , 0 , ◦ v , i v − , 0 , ∂ h + , 0 , ◦ h , i h 0 ) , 0 ) , C sv := ( C s , C v , ∂ v C sh := ( C s , C h , ∂ h − , 1 , ∂ v + , 1 , ⋄ v , i v − , 1 , ∂ h + , 1 , ⋄ h , i h 1 ) , 1 ) , where C sh is the category C 1 and C vo is the category C 0 .

  8. � � � Double groupoids ◮ We introduce a cubical notion of coherence, in n -categories enriched in double groupoids. ◮ A double category is an internal category ( C 1 , C 0 , ∂ C − , ∂ C + , ◦ C , i C ) in Cat, Ehresmann ’64. ( C 1 ) 0 � ( C 0 ) 0 ( C 0 ) 0 ( C 0 ) 1 � ( C 1 ) 1 ( C 0 ) 1 � ( C 0 ) 0 ( C 0 ) 0 ( C 1 ) 0 ◮ It gives four related categories C vo := ( C v , C o , ∂ v C ho := ( C h , C o , ∂ h − , 0 , ∂ v + , 0 , ◦ v , i v − , 0 , ∂ h + , 0 , ◦ h , i h 0 ) , 0 ) , C sv := ( C s , C v , ∂ v C sh := ( C s , C h , ∂ h − , 1 , ∂ v + , 1 , ⋄ v , i v − , 1 , ∂ h + , 1 , ⋄ h , i h 1 ) , 1 ) , where C sh is the category C 1 and C vo is the category C 0 . ◮ Elements of C o : point cells, elements of C h and C v : horizontal cells and vertical cells. x 1 e f � x 2 x 1 x 2

  9. � � � Double groupoids ◮ Elements of C s are square cells: ∂ h − , 1 ( A ) � · · ∂ v ∂ v − , 1 ( A ) + , 1 ( A ) A � · · ∂ h + , 1 ( A )

  10. � � � � � � � � � � Double groupoids ◮ Elements of C s are square cells: ∂ h i h − , 1 ( A ) � 0 ( x ) � f · · x 1 x 2 x x ∂ v ∂ v , with identities i v i v i v − , 1 ( A ) + , 1 ( A ) i h 1 ( e ) A 0 ( x 1 ) 1 ( f ) 0 ( x 2 ) e e � · � x 2 � y · x 1 y ∂ h + , 1 ( A ) f i h 0 ( y )

  11. � � � � � � � � � � � � � � � � � � � � Double groupoids ◮ Elements of C s are square cells: ∂ h i h − , 1 ( A ) � 0 ( x ) � f · · x 1 x 2 x x ∂ v ∂ v , with identities i v i v i v − , 1 ( A ) + , 1 ( A ) i h 1 ( e ) A 0 ( x 1 ) 1 ( f ) 0 ( x 2 ) e e � · � x 2 � y · x 1 y ∂ h + , 1 ( A ) f i h 0 ( y ) ◮ Compositions f 1 ◦ h f 2 f 1 f 2 � x 3 x 1 x 2 x 1 x 3 A ⋄ v B e 1 e 2 e 3 e 1 e 3 A B � � y 2 � y 3 � y 3 y 1 y 1 g 1 g 2 g 1 ◦ h g 2 i in C v and A , A ′ , B in C s . for all x i , y i , z i in C o , f i in C h , e i , e ′

  12. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Double groupoids ◮ Elements of C s are square cells: ∂ h i h − , 1 ( A ) � 0 ( x ) � f · · x 1 x 2 x x ∂ v ∂ v , with identities i v i v i v − , 1 ( A ) + , 1 ( A ) i h 1 ( e ) A 0 ( x 1 ) 1 ( f ) 0 ( x 2 ) e e � · � x 2 � y · x 1 y ∂ h + , 1 ( A ) f i h 0 ( y ) ◮ Compositions f 1 ◦ h f 2 f 1 f 2 � x 3 x 1 x 2 x 1 x 3 A ⋄ v B e 1 e 2 e 3 e 1 e 3 A B � � y 2 � y 3 � y 3 y 1 y 1 g 1 g 2 g 1 ◦ h g 2 f 1 f 1 x 1 x 2 x 1 x 2 e 1 e 2 A � e 1 ◦ v e ′ e 2 ◦ v e ′ y 1 y 2 A ⋄ h A ′ 1 2 f 2 e ′ e ′ A ′ 1 � 2 � z 2 z 1 � z 2 z 1 f 3 f 3 i in C v and A , A ′ , B in C s . for all x i , y i , z i in C o , f i in C h , e i , e ′

  13. Double groupoids ◮ These compositions satisfy the middle four interchange law:

  14. � � � Double groupoids ◮ These compositions satisfy the middle four interchange law: f 1 x 1 x 2 e 1 � e 2 A � y 2 y 1 g 1

  15. � � � � � � Double groupoids ◮ These compositions satisfy the middle four interchange law: f 1 x 1 x 2 e 1 � e 2 A � y 2 y 1 g 1 ⋄ h g 1 y 1 y 2 e ′ e ′ A ′ 1 � 2 � z 2 z 1 h 1

  16. � � � � � � � � � � � � Double groupoids ◮ These compositions satisfy the middle four interchange law: f 1 f 2 x 1 x 2 x 2 x 3 e 1 � e 2 e 2 � e 3 A B � y 2 � y 3 y 1 g 1 y 2 g 2 ⋄ h ⋄ v ⋄ h g 1 g 2 y 1 y 2 y 2 y 3 e ′ e ′ e ′ e ′ A ′ B ′ 1 � 2 � 2 3 � z 2 � z 3 z 1 z 2 h 1 h 2

  17. � � � � � � � � � � � � Double groupoids ◮ These compositions satisfy the middle four interchange law: f 1 f 2 x 1 x 2 x 2 x 3 e 1 � e 2 e 2 � e 3 A B � y 2 � y 3 y 1 g 1 y 2 g 2 ⋄ h ⋄ v ⋄ h = g 1 g 2 y 1 y 2 y 2 y 3 e ′ e ′ e ′ e ′ A ′ B ′ 1 � 2 � 2 3 � z 2 � z 3 z 1 z 2 h 1 h 2

  18. � � � � � � � � � � � � � � � � � � Double groupoids ◮ These compositions satisfy the middle four interchange law: f 1 f 2 f 1 f 2 x 1 x 2 x 2 x 3 x 1 x 2 x 2 x 3 ⋄ v e 1 � e 2 e 2 � e 3 e 1 � e 2 e 2 � e 3 A B A B � y 2 � y 3 � y 2 � y 3 y 1 g 1 y 2 g 2 y 1 g 1 y 2 g 2 ⋄ h ⋄ v ⋄ h = g 1 g 2 y 1 y 2 y 2 y 3 e ′ e ′ e ′ e ′ A ′ B ′ 1 � 2 � 2 3 � z 2 � z 3 z 1 z 2 h 1 h 2

  19. � � � � � � � � � � � � � � � � � � � � � � � � Double groupoids ◮ These compositions satisfy the middle four interchange law: f 1 f 2 f 1 f 2 x 1 x 2 x 2 x 3 x 1 x 2 x 2 x 3 ⋄ v e 1 � e 2 e 2 � e 3 e 1 � e 2 e 2 � e 3 A B A B � y 2 � y 3 � y 2 � y 3 y 1 g 1 y 2 g 2 y 1 g 1 y 2 g 2 ⋄ h ⋄ v ⋄ h = ⋄ h g 1 g 2 g 1 g 2 y 1 y 2 y 2 y 3 y 1 y 2 y 2 y 3 e ′ e ′ e ′ e ′ e ′ e ′ ⋄ v e ′ e ′ A ′ B ′ A ′ B ′ 1 � 2 � 1 � 2 � 2 3 2 3 � z 2 � z 3 � z 2 � z 3 z 1 z 2 z 1 z 2 h 1 h 2 h 1 h 2

  20. � � � � � � � � � � � � � � � � � � � � � � � � Double groupoids ◮ These compositions satisfy the middle four interchange law: f 1 f 2 f 1 f 2 x 1 x 2 x 2 x 3 x 1 x 2 x 2 x 3 ⋄ v e 1 � e 2 e 2 � e 3 e 1 � e 2 e 2 � e 3 A B A B � y 2 � y 3 � y 2 � y 3 y 1 g 1 y 2 g 2 y 1 g 1 y 2 g 2 ⋄ h ⋄ v ⋄ h = ⋄ h g 1 g 2 g 1 g 2 y 1 y 2 y 2 y 3 y 1 y 2 y 2 y 3 e ′ e ′ e ′ e ′ e ′ e ′ ⋄ v e ′ e ′ A ′ B ′ A ′ B ′ 1 � 2 � 1 � 2 � 2 3 2 3 � z 2 � z 3 � z 2 � z 3 z 1 z 2 z 1 z 2 h 1 h 2 h 1 h 2 ◮ Double groupoid: double category in which horizontal, vertical and square cells are invertible.

  21. � � � � � � � � � � � � � � � � � � � � � � � � Double groupoids ◮ These compositions satisfy the middle four interchange law: f 1 f 2 f 1 f 2 x 1 x 2 x 2 x 3 x 1 x 2 x 2 x 3 ⋄ v e 1 � e 2 e 2 � e 3 e 1 � e 2 e 2 � e 3 A B A B � y 2 � y 3 � y 2 � y 3 y 1 g 1 y 2 g 2 y 1 g 1 y 2 g 2 ⋄ h ⋄ v ⋄ h = ⋄ h g 1 g 2 g 1 g 2 y 1 y 2 y 2 y 3 y 1 y 2 y 2 y 3 e ′ e ′ e ′ e ′ e ′ e ′ ⋄ v e ′ e ′ A ′ B ′ A ′ B ′ 1 � 2 � 1 � 2 � 2 3 2 3 � z 2 � z 3 � z 2 � z 3 z 1 z 2 z 1 z 2 h 1 h 2 h 1 h 2 ◮ Double groupoid: double category in which horizontal, vertical and square cells are invertible. ◮ n -category enriched in double groupoids: n -category C such that any homset C n ( x , y ) is a double groupoid.

  22. � � � � � � � � � � � � � � � � � � � � � � � � Double groupoids ◮ These compositions satisfy the middle four interchange law: f 1 f 2 f 1 f 2 x 1 x 2 x 2 x 3 x 1 x 2 x 2 x 3 ⋄ v e 1 � e 2 e 2 � e 3 e 1 � e 2 e 2 � e 3 A B A B � y 2 � y 3 � y 2 � y 3 y 1 g 1 y 2 g 2 y 1 g 1 y 2 g 2 ⋄ h ⋄ v ⋄ h = ⋄ h g 1 g 2 g 1 g 2 y 1 y 2 y 2 y 3 y 1 y 2 y 2 y 3 e ′ e ′ e ′ e ′ e ′ e ′ ⋄ v e ′ e ′ A ′ B ′ A ′ B ′ 1 � 2 � 1 � 2 � 2 3 2 3 � z 2 � z 3 � z 2 � z 3 z 1 z 2 z 1 z 2 h 1 h 2 h 1 h 2 ◮ Double groupoid: double category in which horizontal, vertical and square cells are invertible. ◮ n -category enriched in double groupoids: n -category C such that any homset C n ( x , y ) is a double groupoid. ◮ Horizontal ( n + 1 ) -category: category of rewritings, vertical ( n + 1 ) -category: category of modulo rules.

  23. Polygraphs ◮ Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories.

  24. Polygraphs ◮ Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories. ◮ An n -polygraph generates a free n -category.

  25. Polygraphs ◮ Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories. ◮ An n -polygraph generates a free n -category. P ∗ 0 � � P 0 P 1

  26. � Polygraphs ◮ Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories. ◮ An n -polygraph generates a free n -category. P ∗ P ∗ 0 � � 1 P 0 P 1

  27. � Polygraphs ◮ Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories. ◮ An n -polygraph generates a free n -category. P ∗ P ∗ 0 � � 1 � � P 0 P 1 P 2

  28. � � Polygraphs ◮ Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories. ◮ An n -polygraph generates a free n -category. P ∗ P ∗ P ∗ 0 � � 1 � � 2 P 0 P 1 P 2

  29. � � � � � Polygraphs ◮ Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories. ◮ An n -polygraph generates a free n -category. P ∗ P ∗ P ∗ P ∗ P ∗ ( . . . ) � � 0 � � 1 � � 2 � � n − 1 n � � ( . . . ) P 0 P 1 P 2 P n − 1 P n

  30. � � � � � � Polygraphs ◮ Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories. ◮ An n -polygraph generates a free n -category. P ∗ P ∗ P ∗ P ∗ P ∗ ( . . . ) � � 0 � � 1 � � 2 � � n − 1 n � � ( . . . ) P 0 P 1 P 2 P n − 1 P n P ⊤ n

  31. � � � � � � Polygraphs ◮ Polygraphs are higher-dimensional generating systems of higher-dimensional globular strict categories. ◮ An n -polygraph generates a free n -category. P ∗ P ∗ P ∗ P ∗ P ∗ ( . . . ) � � 0 � � 1 � � 2 � � n − 1 n � � ( . . . ) P 0 P 1 P 2 P n − 1 P n P ⊤ n ◮ An ( n − 1 ) -category C is presented by an n -polygraph ( P 0 , . . . , P n ) if C ≃ P ∗ n − 1 / ≡ P n

  32. Double ( n + 2 , n ) -polygraphs ◮ A double n -polygraph is a data ( P v , P h , P s ) made of:

  33. �� Double ( n + 2 , n ) -polygraphs ◮ A double n -polygraph is a data ( P v , P h , P s ) made of: ◮ two ( n + 1 ) -polygraphs P v and P h such that P v k = P h k for k ≤ n , P v �� P ∗ P h n + 1 n + 1 n

  34. � � �� � �� � � � Double ( n + 2 , n ) -polygraphs ◮ A double n -polygraph is a data ( P v , P h , P s ) made of: ◮ two ( n + 1 ) -polygraphs P v and P h such that P v k = P h k for k ≤ n , ( P v n + 1 ) ∗ ( P h n + 1 ) ∗ P v P ∗ P h n + 1 n n + 1

  35. � � �� � �� � � � � � � � Double ( n + 2 , n ) -polygraphs ◮ A double n -polygraph is a data ( P v , P h , P s ) made of: ◮ two ( n + 1 ) -polygraphs P v and P h such that P v k = P h k for k ≤ n , ◮ a 2-square extension P s of the pair of ( n + 1 ) -categories (( P v ) ∗ , ( P h ) ∗ ) , that is a set equipped with four maps making Γ a 2-cubical set. P s ( P v n + 1 ) ∗ ( P h n + 1 ) ∗ P v P ∗ P h n + 1 n n + 1

  36. � � �� � � � � � �� � � � Double ( n + 2 , n ) -polygraphs ◮ A double n -polygraph is a data ( P v , P h , P s ) made of: ◮ two ( n + 1 ) -polygraphs P v and P h such that P v k = P h k for k ≤ n , ◮ a 2-square extension P s of the pair of ( n + 1 ) -categories (( P v ) ∗ , ( P h ) ∗ ) , that is a set equipped with four maps making Γ a 2-cubical set. P s ( P v n + 1 ) ∗ ( P h n + 1 ) ∗ P v P ∗ P h n + 1 n n + 1 ◮ A double ( n + 2 , n ) -polygraph is a double n -polygraph in which P s is defined on (( P v ) ⊤ , ( P h ) ⊤ ) .

  37. � � � �� � �� � � � � � � Double ( n + 2 , n ) -polygraphs ◮ A double n -polygraph is a data ( P v , P h , P s ) made of: ◮ two ( n + 1 ) -polygraphs P v and P h such that P v k = P h k for k ≤ n , ◮ a 2-square extension P s of the pair of ( n + 1 ) -categories (( P v ) ∗ , ( P h ) ∗ ) , that is a set equipped with four maps making Γ a 2-cubical set. P s ( P v n + 1 ) ∗ ( P h n + 1 ) ∗ P v P ∗ P h n + 1 n n + 1 ◮ A double ( n + 2 , n ) -polygraph is a double n -polygraph in which P s is defined on (( P v ) ⊤ , ( P h ) ⊤ ) . ◮ A double ( n + 2 , n ) -polygraph ( P v , P h , P s ) generates a free ( n − 1 ) -category enriched in | double groupoids, denoted by ( P v , P h , P s ) = .

  38. � � Acyclicity ◮ A 2-square extension P s of (( P v ) ⊤ , ( P h ) ⊤ ) is acyclic if for any square ( P h ) ⊤ � · · ( P v ) ⊤ ( P v ) ⊤ S = ( P h ) ⊤ � · ·

  39. � � � Acyclicity ◮ A 2-square extension P s of (( P v ) ⊤ , ( P h ) ⊤ ) is acyclic if for any square ( P h ) ⊤ � · · ( P v ) ⊤ ( P v ) ⊤ A S = ( P h ) ⊤ � · · | = there exists a square ( n + 1 ) -cell A in ( P v , P h , P s ) such that ∂ ( A ) = S .

  40. � � � Acyclicity ◮ A 2-square extension P s of (( P v ) ⊤ , ( P h ) ⊤ ) is acyclic if for any square ( P h ) ⊤ � · · ( P v ) ⊤ ( P v ) ⊤ A S = ( P h ) ⊤ � · · | = there exists a square ( n + 1 ) -cell A in ( P v , P h , P s ) such that ∂ ( A ) = S . ◮ A 2-fold coherent presentation of an n -category C is a double ( n + 2 , n ) -polygraph ( P v , P h , P s ) such that: ◮ the ( n + 1 ) -polygraph P v � P h presents C ; ◮ P s is acyclic

  41. � � � Acyclicity ◮ A 2-square extension P s of (( P v ) ⊤ , ( P h ) ⊤ ) is acyclic if for any square ( P h ) ⊤ � · · ( P v ) ⊤ ( P v ) ⊤ A S = ( P h ) ⊤ � · · | = there exists a square ( n + 1 ) -cell A in ( P v , P h , P s ) such that ∂ ( A ) = S . ◮ A 2-fold coherent presentation of an n -category C is a double ( n + 2 , n ) -polygraph ( P v , P h , P s ) such that: ◮ the ( n + 1 ) -polygraph P v � P h presents C ; ◮ P s is acyclic ◮ Example: Let E be a convergent ( n + 1 ) -polygraph.

  42. � � � � Acyclicity ◮ A 2-square extension P s of (( P v ) ⊤ , ( P h ) ⊤ ) is acyclic if for any square ( P h ) ⊤ � · · ( P v ) ⊤ ( P v ) ⊤ A S = ( P h ) ⊤ � · · | = there exists a square ( n + 1 ) -cell A in ( P v , P h , P s ) such that ∂ ( A ) = S . ◮ A 2-fold coherent presentation of an n -category C is a double ( n + 2 , n ) -polygraph ( P v , P h , P s ) such that: ◮ the ( n + 1 ) -polygraph P v � P h presents C ; ◮ P s is acyclic ◮ Example: Let E be a convergent ( n + 1 ) -polygraph. Cd ( E ) := square extension containing = � · · e 1 ⋆ n − 1 e ′ e 2 ⋆ n − 1 e ′ 1 � 2 = � · · for a choice of confluence of any critical branching ( e 1 , e 2 ) of E .

  43. � � � � Acyclicity ◮ A 2-square extension P s of (( P v ) ⊤ , ( P h ) ⊤ ) is acyclic if for any square ( P h ) ⊤ � · · ( P v ) ⊤ ( P v ) ⊤ A S = ( P h ) ⊤ � · · | = there exists a square ( n + 1 ) -cell A in ( P v , P h , P s ) such that ∂ ( A ) = S . ◮ A 2-fold coherent presentation of an n -category C is a double ( n + 2 , n ) -polygraph ( P v , P h , P s ) such that: ◮ the ( n + 1 ) -polygraph P v � P h presents C ; ◮ P s is acyclic ◮ Example: Let E be a convergent ( n + 1 ) -polygraph. Cd ( E ) := square extension containing = � · · e 1 ⋆ n − 1 e ′ e 2 ⋆ n − 1 e ′ 1 � 2 = � · · for a choice of confluence of any critical branching ( e 1 , e 2 ) of E . ◮ From Squier’s theorem, ( E , ∅ , Cd ( E )) is a 2-fold coherent presentation of C .

  44. III. Polygraphs modulo

  45. Polygraphs modulo A n -polygraph modulo is a data ( R , E , S ) made of

  46. Polygraphs modulo A n -polygraph modulo is a data ( R , E , S ) made of ◮ an n -polygraph R of primary rules,

  47. Polygraphs modulo A n -polygraph modulo is a data ( R , E , S ) made of ◮ an n -polygraph R of primary rules, ◮ an n -polygraph E such that E k = R k for k ≤ n − 2 and E n − 1 ⊆ R n − 1 , of modulo rules,

  48. Polygraphs modulo A n -polygraph modulo is a data ( R , E , S ) made of ◮ an n -polygraph R of primary rules, ◮ an n -polygraph E such that E k = R k for k ≤ n − 2 and E n − 1 ⊆ R n − 1 , of modulo rules, ◮ S is a cellular extension of R ∗ n − 1 such that R ⊆ S ⊆ E R E ,

  49. � � � � � Polygraphs modulo A n -polygraph modulo is a data ( R , E , S ) made of ◮ an n -polygraph R of primary rules, ◮ an n -polygraph E such that E k = R k for k ≤ n − 2 and E n − 1 ⊆ R n − 1 , of modulo rules, ◮ S is a cellular extension of R ∗ n − 1 such that R ⊆ S ⊆ E R E , where the cellular extension E R E is defined by γ E R E : E R E → Sph n − 1 ( R ∗ n − 1 ) where E R E is the set of triples ( e , f , e ′ ) in E ⊤ × R ∗ ( 1 ) × E ⊤ such that e u � � v f e ′

  50. � �� � � � Polygraphs modulo A n -polygraph modulo is a data ( R , E , S ) made of ◮ an n -polygraph R of primary rules, ◮ an n -polygraph E such that E k = R k for k ≤ n − 2 and E n − 1 ⊆ R n − 1 , of modulo rules, ◮ S is a cellular extension of R ∗ n − 1 such that R ⊆ S ⊆ E R E , where the cellular extension E R E is defined by γ E R E : E R E → Sph n − 1 ( R ∗ n − 1 ) where E R E is the set of triples ( e , f , e ′ ) in E ⊤ × R ∗ ( 1 ) × E ⊤ such that e u � � v f e ′ and the map γ E R E is defined by γ E R E ( e , f , e ′ ) = ( ∂ − , n − 1 ( e ) , ∂ + , n − 1 ( e ′ )) .

  51. � Branchings and confluence modulo ◮ A branching modulo E of the n -polygraph modulo S is a triple ( f , e , g ) where f and g are in S ∗ n and e is in E ⊤ n , such that: f u ′ u e � g � v ′ v

  52. � Branchings and confluence modulo ◮ A branching modulo E of the n -polygraph modulo S is a triple ( f , e , g ) where f and g are in S ∗ n and e is in E ⊤ n , such that: f u ′ u e � g � v ′ v ◮ It is local if f is in S ∗ ( 1 ) , g is in S ∗ n and e in E ⊤ such that ℓ ( g ) + ℓ ( e ) = 1. n n

  53. � � � Branchings and confluence modulo ◮ A branching modulo E of the n -polygraph modulo S is a triple ( f , e , g ) where f and g are in S ∗ n and e is in E ⊤ n , such that: f u ′ u e � g � v ′ v ◮ It is local if f is in S ∗ ( 1 ) , g is in S ∗ n and e in E ⊤ such that ℓ ( g ) + ℓ ( e ) = 1. n n ◮ It is confluent modulo E if there exists f ′ , g ′ in S ∗ n and e ′ in E ⊤ n : f ′ � w f u ′ u e ′ e � g � v ′ g ′ � w ′ v

  54. � � � Branchings and confluence modulo ◮ A branching modulo E of the n -polygraph modulo S is a triple ( f , e , g ) where f and g are in S ∗ n and e is in E ⊤ n , such that: f u ′ u e � g � v ′ v ◮ It is local if f is in S ∗ ( 1 ) , g is in S ∗ n and e in E ⊤ such that ℓ ( g ) + ℓ ( e ) = 1. n n ◮ It is confluent modulo E if there exists f ′ , g ′ in S ∗ n and e ′ in E ⊤ n : f ′ � w f u ′ u e ′ e � g � v ′ g ′ � w ′ v ◮ Confluence modulo E (resp. local confluence modulo E ): any branching (resp. local branching) of S modulo E is confluent modulo E .

  55. IV. Coherence modulo

  56. Coherent confluence modulo ◮ We consider Γ a 2-square extension of ( E ⊤ , S ∗ ) .

  57. � � Coherent confluence modulo ◮ We consider Γ a 2-square extension of ( E ⊤ , S ∗ ) . ◮ A branching modulo E is Γ -confluent modulo E if there exist f ′ , g ′ in S ∗ n , e ′ in E ⊤ n f ′ � w f u ′ u e � e ′ g � v ′ g ′ � w ′ v

  58. � � � Coherent confluence modulo ◮ We consider Γ a 2-square extension of ( E ⊤ , S ∗ ) . ◮ A branching modulo E is Γ -confluent modulo E if there exist f ′ , g ′ in S ∗ n , e ′ in E ⊤ and a n | = , v : square-cell A in ( E , S , E ⋊ Γ ∪ Peiff ( E , S )) f ′ � f u ′ u w e � e ′ A g � v ′ g ′ � w ′ v

  59. � � � Coherent confluence modulo ◮ We consider Γ a 2-square extension of ( E ⊤ , S ∗ ) . ◮ A branching modulo E is Γ -confluent modulo E if there exist f ′ , g ′ in S ∗ n , e ′ in E ⊤ and a n | = , v : square-cell A in ( E , S , E ⋊ Γ ∪ Peiff ( E , S )) f ′ � f u ′ u w e � e ′ A g � v ′ g ′ � w ′ v | , v is the free n -category enriched in double categories generated by ( E , S , − ) , in = ◮ ( E , S , − ) which all vertical cells are invertible.

  60. � � � � � Coherent confluence modulo ◮ We consider Γ a 2-square extension of ( E ⊤ , S ∗ ) . ◮ A branching modulo E is Γ -confluent modulo E if there exist f ′ , g ′ in S ∗ n , e ′ in E ⊤ and a n | = , v : square-cell A in ( E , S , E ⋊ Γ ∪ Peiff ( E , S )) f ′ � f u ′ u w e � e ′ A g � v ′ g ′ � w ′ v | , v is the free n -category enriched in double categories generated by ( E , S , − ) , in = ◮ ( E , S , − ) which all vertical cells are invertible. ◮ Peiff ( E , S ) is the 2-square extension containing the following squares for all e , e ′ ∈ E ⊤ and f ∈ S ∗ . f ⋆ i v � w ⋆ i f � u ′ ⋆ i v w ⋆ i u ′ u ⋆ i v w ⋆ i u u ⋆ i e � u ′ ⋆ i e e ′ ⋆ i u � e ′ ⋆ i u ′ u ⋆ i v ′ f ⋆ i v ′ � u ′ ⋆ i v ′ w ′ ⋆ i u w ′ ⋆ i f � w ′ ⋆ i u ′

  61. � � � � � � � � � Coherent confluence modulo ◮ We consider Γ a 2-square extension of ( E ⊤ , S ∗ ) . ◮ A branching modulo E is Γ -confluent modulo E if there exist f ′ , g ′ in S ∗ n , e ′ in E ⊤ and a n | = , v : square-cell A in ( E , S , E ⋊ Γ ∪ Peiff ( E , S )) f ′ � f u ′ u w e � e ′ A g � v ′ g ′ � w ′ v | , v is the free n -category enriched in double categories generated by ( E , S , − ) , in = ◮ ( E , S , − ) which all vertical cells are invertible. ◮ Peiff ( E , S ) is the 2-square extension containing the following squares for all e , e ′ ∈ E ⊤ and f ∈ S ∗ . f ⋆ i v � w ⋆ i f � u ′ ⋆ i v w ⋆ i u ′ u ⋆ i v w ⋆ i u u ⋆ i e � u ′ ⋆ i e e ′ ⋆ i u � e ′ ⋆ i u ′ u ⋆ i v ′ f ⋆ i v ′ � u ′ ⋆ i v ′ w ′ ⋆ i u w ′ ⋆ i f � w ′ ⋆ i u ′ ◮ E ⋊ Γ is to avoid "redundant" elements in Γ for different squares corresponding to the same branching of S modulo E : f ′ f ′ f f � v ′ � v ′ u v u v e � e ′ and e ⋆ n − 1 e 1 � e ′ u ′ g = e 1 g 1 e 2 � w � w ′ g 1 e 2 � w � w ′ u 1 g ′ g ′

  62. Coherent Newman and critical pair lemmas ◮ S is Γ -confluent modulo E (resp. locally Γ -confluent modulo E ) if any of its branching modulo E (resp. local branching modulo E ) is Γ -confluent modulo E .

  63. Coherent Newman and critical pair lemmas ◮ S is Γ -confluent modulo E (resp. locally Γ -confluent modulo E ) if any of its branching modulo E (resp. local branching modulo E ) is Γ -confluent modulo E . ◮ Theorem. [D.-Malbos ’18] If E R E is terminating, the following assertions are equivalent:

  64. Coherent Newman and critical pair lemmas ◮ S is Γ -confluent modulo E (resp. locally Γ -confluent modulo E ) if any of its branching modulo E (resp. local branching modulo E ) is Γ -confluent modulo E . ◮ Theorem. [D.-Malbos ’18] If E R E is terminating, the following assertions are equivalent: ◮ S is Γ -confluent modulo E ;

  65. Coherent Newman and critical pair lemmas ◮ S is Γ -confluent modulo E (resp. locally Γ -confluent modulo E ) if any of its branching modulo E (resp. local branching modulo E ) is Γ -confluent modulo E . ◮ Theorem. [D.-Malbos ’18] If E R E is terminating, the following assertions are equivalent: ◮ S is Γ -confluent modulo E ; ◮ S is locally Γ -confluent modulo E ;

  66. � � � � � Coherent Newman and critical pair lemmas ◮ S is Γ -confluent modulo E (resp. locally Γ -confluent modulo E ) if any of its branching modulo E (resp. local branching modulo E ) is Γ -confluent modulo E . ◮ Theorem. [D.-Malbos ’18] If E R E is terminating, the following assertions are equivalent: ◮ S is Γ -confluent modulo E ; ◮ S is locally Γ -confluent modulo E ; ◮ S satisfies properties a ) and b ) : S ∗ � v ′ S ∗ � v ′ S ∗ ( 1 ) � S ∗ ( 1 ) � u v u v E ⊤ ( 1 ) � E ⊤ = A B E ⊤ a) : b) : S ∗ � w ′ R ∗ ( 1 ) � w u ′ � w u S ∗ for any local branching of S modulo E .

  67. � � � � � Coherent Newman and critical pair lemmas ◮ S is Γ -confluent modulo E (resp. locally Γ -confluent modulo E ) if any of its branching modulo E (resp. local branching modulo E ) is Γ -confluent modulo E . ◮ Theorem. [D.-Malbos ’18] If E R E is terminating, the following assertions are equivalent: ◮ S is Γ -confluent modulo E ; ◮ S is locally Γ -confluent modulo E ; ◮ S satisfies properties a ) and b ) : S ∗ � v ′ S ∗ � v ′ S ∗ ( 1 ) � S ∗ ( 1 ) � u v u v E ⊤ ( 1 ) � E ⊤ = A B E ⊤ a) : b) : S ∗ � w ′ R ∗ ( 1 ) � w u ′ � w u S ∗ for any local branching of S modulo E . ◮ S satisfies properties a ) and b ) for any critical branching of S modulo E .

  68. � � � � � Coherent Newman and critical pair lemmas ◮ S is Γ -confluent modulo E (resp. locally Γ -confluent modulo E ) if any of its branching modulo E (resp. local branching modulo E ) is Γ -confluent modulo E . ◮ Theorem. [D.-Malbos ’18] If E R E is terminating, the following assertions are equivalent: ◮ S is Γ -confluent modulo E ; ◮ S is locally Γ -confluent modulo E ; ◮ S satisfies properties a ) and b ) : S ∗ � v ′ S ∗ � v ′ S ∗ ( 1 ) � S ∗ ( 1 ) � u v u v E ⊤ ( 1 ) � E ⊤ = A B E ⊤ a) : b) : S ∗ � w ′ R ∗ ( 1 ) � w u ′ � w u S ∗ for any local branching of S modulo E . ◮ S satisfies properties a ) and b ) for any critical branching of S modulo E . ◮ For S = E R , property b ) is trivially satisfied.

  69. � � � � � Coherent Newman and critical pair lemmas ◮ S is Γ -confluent modulo E (resp. locally Γ -confluent modulo E ) if any of its branching modulo E (resp. local branching modulo E ) is Γ -confluent modulo E . ◮ Theorem. [D.-Malbos ’18] If E R E is terminating, the following assertions are equivalent: ◮ S is Γ -confluent modulo E ; ◮ S is locally Γ -confluent modulo E ; ◮ S satisfies properties a ) and b ) : S ∗ � v ′ S ∗ � v ′ S ∗ ( 1 ) � S ∗ ( 1 ) � u v u v E ⊤ ( 1 ) � E ⊤ = A B E ⊤ a) : b) : R ∗ ( 1 ) � w S ∗ � w ′ u ′ � w u S ∗ for any local branching of S modulo E . ◮ S satisfies properties a ) and b ) for any critical branching of S modulo E . f � ◮ For S = E R , property b ) is trivially satisfied. u v e � v ′

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend