pfaffian groupoids
play

Pfaffian groupoids Mar a Amelia Salazar CRM, Barcelona December - PowerPoint PPT Presentation

Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Pfaffian groupoids Mar a Amelia Salazar CRM, Barcelona December 10, 2013 Mar a Amelia Salazar Pfaffian groupoids Pfaffian groupoids


  1. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Pfaffian groupoids Mar´ ıa Amelia Salazar CRM, Barcelona December 10, 2013 Mar´ ıa Amelia Salazar Pfaffian groupoids

  2. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Motivation Understand the work of Cartan on Lie Pseudogroups, and the theory of PDE’s using the language of Lie groupoids and Lie algebroids. Mar´ ıa Amelia Salazar Pfaffian groupoids

  3. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Pfaffian groupoid Definition A Pfaffian groupoid ( G , θ ) consists of: G ⇒ M Lie groupoid, θ ∈ Ω 1 ( G , t ∗ E ) point-wise surjective, E → M ∈ Rep ( G ), with ker θ ∩ ker ds involutive, Mar´ ıa Amelia Salazar Pfaffian groupoids

  4. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Pfaffian groupoid Definition A Pfaffian groupoid ( G , θ ) consists of: G ⇒ M Lie groupoid, θ ∈ Ω 1 ( G , t ∗ E ) point-wise surjective, E → M ∈ Rep ( G ), with ker θ ∩ ker ds involutive, with the property that θ is multiplicative: m ∗ θ ( g , h ) = g · pr ∗ 1 θ ( g , h ) + pr ∗ 2 θ ( g , h ) , m , pr 1 , pr 2 : G 2 ⊂ G × G → G . Mar´ ıa Amelia Salazar Pfaffian groupoids

  5. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Rotations on the plane) For the standard action of S 1 on R 2 by rotations, we have the action groupoid over R 2 G := S 1 ⋉ R 2 , s ( α, z ) = z , t ( α, z ) = α · z , and θ = d α ∈ Ω 1 ( G ) . Mar´ ıa Amelia Salazar Pfaffian groupoids

  6. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Rotations on the plane) For the standard action of S 1 on R 2 by rotations, we have the action groupoid over R 2 G := S 1 ⋉ R 2 , s ( α, z ) = z , t ( α, z ) = α · z , and θ = d α ∈ Ω 1 ( G ) . A bisection β of G (i.e. β : R 2 → G , s ◦ β = id and t ◦ β -diffeo) belongs to iff α : R 2 → S 1 is constant . Sol ( G , θ ) = { β | β ∗ θ = 0 } Diff ( R 2 ) ⊃ Γ naive = t ◦ Sol ( G , θ ) = { rotations of the plane } Mar´ ıa Amelia Salazar Pfaffian groupoids

  7. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Jet groupoids and the Cartan form) For M a manifold, consider the pair groupoid M × M ⇒ M . Mar´ ıa Amelia Salazar Pfaffian groupoids

  8. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Jet groupoids and the Cartan form) For M a manifold, consider the pair groupoid M × M ⇒ M . G = J 1 ( M × M ) = { first jets of local diffeos (= bisections) } . The Cartan form θ 1 ∈ Ω 1 ( G ; t ∗ TM ) at X ∈ T j 1 x φ J 1 ( M × M ) is: dpr 1 ( X ) − d x φ ( dpr 2 ( X )) . Mar´ ıa Amelia Salazar Pfaffian groupoids

  9. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Jet groupoids and the Cartan form) For M a manifold, consider the pair groupoid M × M ⇒ M . G = J 1 ( M × M ) = { first jets of local diffeos (= bisections) } . The Cartan form θ 1 ∈ Ω 1 ( G ; t ∗ TM ) at X ∈ T j 1 x φ J 1 ( M × M ) is: dpr 1 ( X ) − d x φ ( dpr 2 ( X )) . Sol ( G , θ 1 ) = { β : M → J 1 ( M × M ) | β = j 1 f , f a local diffeo } correspond to VB-iso F : TM → TM over f s.t F x = d x f . Mar´ ıa Amelia Salazar Pfaffian groupoids

  10. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Lie-Prolongation Definition Let ( G , θ ) be a Pfaffian groupoid. A Lie-prolongation of ( G , θ ) is a Pfaffian groupoid ( G ′ , θ ′ ) together with a Lie groupoid morphism p : ( G ′ , θ ′ ) → ( G , θ ) , p surjective Mar´ ıa Amelia Salazar Pfaffian groupoids

  11. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Lie-Prolongation Definition Let ( G , θ ) be a Pfaffian groupoid. A Lie-prolongation of ( G , θ ) is a Pfaffian groupoid ( G ′ , θ ′ ) together with a Lie groupoid morphism p : ( G ′ , θ ′ ) → ( G , θ ) , p surjective satisfying: θ ′ takes values in the Lie algebroid A of G , and it is of Lie-type: ker θ ′ ∩ ker ds ′ = ker θ ′ ∩ ker dt ′ , Mar´ ıa Amelia Salazar Pfaffian groupoids

  12. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Lie-Prolongation Definition Let ( G , θ ) be a Pfaffian groupoid. A Lie-prolongation of ( G , θ ) is a Pfaffian groupoid ( G ′ , θ ′ ) together with a Lie groupoid morphism p : ( G ′ , θ ′ ) → ( G , θ ) , p surjective satisfying: θ ′ takes values in the Lie algebroid A of G , and it is of Lie-type: ker θ ′ ∩ ker ds ′ = ker θ ′ ∩ ker dt ′ , Lie ( p ) = θ ′ | A ′ , A ′ = Lie ( G ′ ), Mar´ ıa Amelia Salazar Pfaffian groupoids

  13. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Lie-Prolongation Definition Let ( G , θ ) be a Pfaffian groupoid. A Lie-prolongation of ( G , θ ) is a Pfaffian groupoid ( G ′ , θ ′ ) together with a Lie groupoid morphism p : ( G ′ , θ ′ ) → ( G , θ ) , p surjective satisfying: θ ′ takes values in the Lie algebroid A of G , and it is of Lie-type: ker θ ′ ∩ ker ds ′ = ker θ ′ ∩ ker dt ′ , Lie ( p ) = θ ′ | A ′ , A ′ = Lie ( G ′ ), dp (ker θ ′ ) ⊂ ker θ , for X , Y ∈ ker θ ′ , δθ ( dp ( X ) , dp ( Y )) = 0 , Mar´ ıa Amelia Salazar Pfaffian groupoids

  14. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of the Classical Lie-prolongation Definition The classical Lie-prolongation space P ( G , θ ) of ( G , θ ) consists of j 1 x β ∈ J 1 G with the property that for any X , Y ∈ T x M θ ( d x β ( X )) = 0 and δθ ( d x β ( X ) , d x β ( Y )) = 0 . Mar´ ıa Amelia Salazar Pfaffian groupoids

  15. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of the Classical Lie-prolongation Definition The classical Lie-prolongation space P ( G , θ ) of ( G , θ ) consists of j 1 x β ∈ J 1 G with the property that for any X , Y ∈ T x M θ ( d x β ( X )) = 0 and δθ ( d x β ( X ) , d x β ( Y )) = 0 . Proposition Whenever P ( G , θ ) ⊂ J 1 G smooth and pr : P ( G , θ ) → G is a submersion, ( P ( G , θ ) , θ (1) = θ 1 | P ( G ,θ ) ) is a Lie-prolongation of ( G , θ ). Mar´ ıa Amelia Salazar Pfaffian groupoids

  16. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Rotations on the plane) For G = S 1 ⋉ R 2 , a bisection β : R 2 → G is of the form β = ( α, id ) , with ( x , y ) �→ α · ( x , y ) a diffeo. Mar´ ıa Amelia Salazar Pfaffian groupoids

  17. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Rotations on the plane) For G = S 1 ⋉ R 2 , a bisection β : R 2 → G is of the form β = ( α, id ) , with ( x , y ) �→ α · ( x , y ) a diffeo. For θ = d α , ( x , y ) β | ∂α ∂ x | ( x , y ) = ∂α P ( G , θ ) = { j 1 ∂ y | ( x , y ) = 0 } Mar´ ıa Amelia Salazar Pfaffian groupoids

  18. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Examples Example (Rotations on the plane) For G = S 1 ⋉ R 2 , a bisection β : R 2 → G is of the form β = ( α, id ) , with ( x , y ) �→ α · ( x , y ) a diffeo. For θ = d α , ( x , y ) β | ∂α ∂ x | ( x , y ) = ∂α P ( G , θ ) = { j 1 ∂ y | ( x , y ) = 0 } Example (Jet groupoid and the Cartan form) For J 1 ( M × M ) and the Cartan form θ 1 , and ( θ 1 ) (1) = θ 2 , P ( J 1 ( M × M ) , θ 1 ) = J 2 ( M × M ) , where J 2 ( M × M ) is the second jets of local diffeos, and θ 2 is the Cartan form. Mar´ ıa Amelia Salazar Pfaffian groupoids

  19. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Spencer operator Definition Let A → M be a Lie algebroid and let E ∈ Rep ( A ) with associated connection denoted by ∇ . Mar´ ıa Amelia Salazar Pfaffian groupoids

  20. Pfaffian groupoids Lie-Prolongations Spencer Operators Compatible S.O. Maurer-Cartan Definition of Spencer operator Definition Let A → M be a Lie algebroid and let E ∈ Rep ( A ) with associated connection denoted by ∇ . A Spencer operator is a bilinear operator D : X ( M ) × Γ( A ) → Γ( E ) , ( X , α ) �→ D X ( α ) together with a surjective V.B-map l : A → E , which is C ∞ ( M )-linear in X , satisfies the Leibniz identity relative to l : D X ( f α ) = fD X ( α ) + L X ( f ) l ( α ) , Mar´ ıa Amelia Salazar Pfaffian groupoids

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend