circuit analysis and defect characteristics estimation
play

Circuit Analysis and Defect Characteristics Estimation Method Using - PowerPoint PPT Presentation

Circuit Analysis and Defect Characteristics Estimation Method Using Bimodal Defect-Centric Random Telegraph Noise Model March 17, 2016 TAU 2017 Michitarou Yabuuchi (Renesas System Design Co., Ltd.), Azusa Oshima, Takuya Komawaki, Ryo Kishida,


  1. Circuit Analysis and Defect Characteristics Estimation Method Using Bimodal Defect-Centric Random Telegraph Noise Model March 17, 2016 TAU 2017 Michitarou Yabuuchi (Renesas System Design Co., Ltd.), Azusa Oshima, Takuya Komawaki, Ryo Kishida, Jun Furuta, Kazutoshi Kobayashi (Kyoto Inst. of Tech.), Pieter Weckx (KU Leuven, IMEC), Ben Kaczer (IMEC), Takashi Matsumoto (University of Tokyo), and Hidetoshi Onodera (Kyoto University) 1

  2. Kyoto Inst. of Tech. Summary What is proposed? Defect parameter extraction method and RTN (random telegraph noise) prediction method ๐œ ๐œ @40 nm SiON ฮค ฮค โˆ†๐บ ๐บ โˆ†๐บ ๐บ max max Measurement result of RTN Prediction by frequency fluctuation proposed method distribution by RTN 2

  3. Kyoto Inst. of Tech. Contents ๏ฎ Introduction ๏ฎ Measurement of RTN ๏ฎ Parameter extraction method ๏ฎ Result ๏ฎ Conclusion 3

  4. Kyoto Inst. of Tech. Variation on scaled process -65 nm process voltage temperature process voltage RTN 40 nm- temperature More significant scaling in โ€œsmall areaโ€ ๏ฎ RTN affects the yields โ€“ CMOS image sensor โ€“ Flash, SRAM 4

  5. Kyoto Inst. of Tech. RTN: Random Telegraph Noise Capture Emit th | |โˆ†๐‘Š t # of defect Gate area ๐‘€๐‘‹ + + + + + + โˆ†๐‘Š th /defect + Carier + Si 5

  6. Kyoto Inst. of Tech. Threshold voltage shift ฮ”๐‘Š th by RTN ๏ฎ Defect-centric distribution ๐œˆ โˆ†๐‘Š th = ๐‘‚ ร— ๐œƒ Avg. 2๐‘‚๐œƒ 2 โˆ ฮค Std. dev. ๐œ ฮ”๐‘Š th = 1 ๐‘€๐‘‹ 1 # of Defect ๐‘‚ โˆ ๐‘€๐‘‹ ฮ”๐‘Š th /defect ๐œƒ โˆ ๐‘€๐‘‹ Poisson dist. Exponential dist. 6

  7. Kyoto Inst. of Tech. RTN in high-k process ๏ฝž 65nm 40nm 28nm Unimodal model Bimodal model Each oxide layer has its parameters High-k layer (HK) : ๐‘ถ ๐ˆ๐‹ , ๐œฝ ๐ˆ๐‹ Interface layer (IL) : ๐‘ถ ๐‰๐Œ , ๐œฝ ๐‰๐Œ 7

  8. Kyoto Inst. of Tech. Comparison : Unimodal vs Bimodal Unimodal model Bimodal model ( N , ๐œฝ ) ( N HK , ๐œฝ HK , N IL , ๐œฝ IL ) CCDF ร— N CCDF ร— N ฮ”Vth [ mV] ฮ”Vth [ mV] SiO 2 or SiON HKMG thin HK/IL 8

  9. Kyoto Inst. of Tech. Circuit-level RTN prediction ๐‘ถ ๐ˆ๐‹ , ๐œฝ ๐ˆ๐‹ , ๐‘ถ ๐‰๐Œ , ๐œฝ ๐‰๐Œ ? Calculation by bimodal model of Defect-centric distribution Defect Threshold parameter voltage shift Netlist RTN Circuit w/ โˆ†๐‘Š prediction th Monte-Carlo circuit simulation 9

  10. Kyoto Inst. of Tech. Purpose of this study ๏ฎ Parameter extraction method for RTN characteristics of bimodal model of Defect-centric distribution RO measurement data Proposed ๐‘ถ ๐ˆ๐‹ , ๐œฝ ๐ˆ๐‹ , ๐‘ถ ๐‰๐Œ , ๐œฝ ๐‰๐Œ ! method Confirm w/ Defect Threshold parameter voltage shift measured data Netlist RTN Circuit w/ โˆ†๐‘Š prediction th 10

  11. Kyoto Inst. of Tech. Measurement circuit 40 nm HK/Poly-Si Process TEG x840 7-stage ring oscillator (RO) Count # of oscillation by using on-chip counter 11

  12. Kyoto Inst. of Tech. Measurement method Conditions 9,024 times/RO ๐‘Š dd = 0.65 V ฮ”๐‘ข = 2.2 ms ๐‘ข total = 20 s Fmin ฮ”๐บ = ๐บ max โˆ’ ๐บ min Calculate for each RO ๐บ ๐บ max max 12

  13. Kyoto Inst. of Tech. Result of frequency fluctuation distribution by RTN Follow bimodal defect-centric distribution Standard normal quantile 840 ROs 8.61% ฮค โˆ†๐บ ๐บ max 13

  14. Kyoto Inst. of Tech. How to extract parameters Optimize defect vector Prior to the loop Sensitivity Analysis ๐‘ถ ๐ˆ๐‹๐Ÿ’ , ๐œฝ ๐ˆ๐‹๐Ÿ’ , ๐‘ถ ๐‰๐Œ๐Ÿ’ , ๐œฝ ๐‰๐Œ๐Ÿ’ ๐‘ถ ๐ˆ๐‹๐Ÿ‘ , ๐œฝ ๐ˆ๐‹๐Ÿ‘ , ๐‘ถ ๐‰๐Œ๐Ÿ‘ , ๐œฝ ๐‰๐Œ๐Ÿ‘ ๐‘ถ ๐ˆ๐‹๐Ÿ , ๐œฝ ๐ˆ๐‹๐Ÿ , ๐‘ถ ๐‰๐Œ๐Ÿ , ๐œฝ ๐‰๐Œ๐Ÿ ๐‘ถ ๐ˆ๐‹๐Ÿ , ๐œฝ ๐ˆ๐‹๐Ÿ , ๐‘ถ ๐‰๐Œ๐Ÿ , ๐œฝ ๐‰๐Œ๐Ÿ KS test (calculate object function) ๐œ ๐œ Measured data Prediction ฮค โˆ†๐บ ๐บ ฮค โˆ†๐บ ๐บ max max 14

  15. Kyoto Inst. of Tech. Obtain threshold voltage shift ๏ฎ Calculate ฮ”๐‘Š th w/ defect characteristics โ€“ By using defect-centric distribution ๐‘ถ ๐ˆ๐‹,๐’‹ , ๐œฝ ๐ˆ๐‹,๐’‹ , ๐‘ถ ๐‰๐Œ,๐’‹ , ๐œฝ ๐‰๐Œ,๐’‹ ฮ”๐‘Š ฮ”๐‘Š ฮ”๐‘Š thp1 thp2 thp7 ใƒป ใƒป ใƒป ฮ”๐‘Š ฮ”๐‘Š ฮ”๐‘Š thn1 thn2 thn7 14 Tr. X 840 RO 15

  16. Kyoto Inst. of Tech. Convert ฮ”๐‘Š th to frequency shift (1) ๏ฎ Prior to the loop ฮค ๏ฎ Analyze sensitivity ฮ”๐‘Š โˆ†๐บ ๐บ th to max of MOSFET โ€“ Simulation condition : same as measurement โ€“ Shift ฮ”๐‘Š th of single NMOS and PMOS ๐‘™ p ๐‘™ n max PMOS โˆ†๐บ ๐บ ฮค NMOS ฮ”๐‘Š th [V] 16

  17. Kyoto Inst. of Tech. Convert ฮ”๐‘Š th to frequency shift (2) ฮค โˆ†๐บ ๐บ max with sensitivities ๐‘™ n , ๐‘™ p ๏ฎ Calculate INV RO ฮค ฮค โˆ†๐บ ๐บ max = เท โˆ†๐บ INV,๐‘— ๐บ ฮค โˆ†๐บ INV,๐‘— ๐บ max max = X840 RO ฮ”๐‘Š thp,๐‘— ร— ๐‘™ p ฮค โˆ†๐บ ๐บ = prediction of max + distribution ฮ”๐‘Š thn,๐‘— ร— ๐‘™ n 17

  18. Kyoto Inst. of Tech. Calculation of object function ๏ฎ Kolmogorov-Smirnov test for null hypothesis โ€œpopulations of two samples are the same.โ€ Sample #1:measured data Sample #2:prediction ๐œ ๐œ ฮค ฮค โˆ†๐บ ๐บ โˆ†๐บ ๐บ max max Object function ๐‘ž becomes larger when difference b/w two CDF plots becomes smaller. 18

  19. Kyoto Inst. of Tech. Manipulation of defect vector ๏ฎ Downhill simplex method ๏ฎ Solution for optimization problem โ€“ Maximize object function ๐‘ž ๐’’ ๐’‹ ๐‘ถ ๐ˆ๐‹๐Ÿ’ , ๐œฝ ๐ˆ๐‹๐Ÿ’ , ๐‘ถ ๐‰๐Œ๐Ÿ’ , ๐œฝ ๐‰๐Œ๐Ÿ’ ๐‘ถ ๐ˆ๐‹๐Ÿ‘ , ๐œฝ ๐ˆ๐‹๐Ÿ‘ , ๐‘ถ ๐‰๐Œ๐Ÿ‘ , ๐œฝ ๐‰๐Œ๐Ÿ‘ ๐’’ ๐Ÿ‘ ๐‘ถ ๐ˆ๐‹๐Ÿ , ๐œฝ ๐ˆ๐‹๐Ÿ , ๐‘ถ ๐‰๐Œ๐Ÿ , ๐œฝ ๐‰๐Œ๐Ÿ ๐’’ ๐Ÿ ๐‘ถ ๐ˆ๐‹๐Ÿ , ๐œฝ ๐ˆ๐‹๐Ÿ , ๐‘ถ ๐‰๐Œ๐Ÿ , ๐œฝ ๐‰๐Œ๐Ÿ ๐’’ ๐Ÿ Convergence condition ๐‘ž ๐‘— > 0.99 or ๐‘— MAX = 500 19

  20. Kyoto Inst. of Tech. Prediction vs measurement data Standard Normal Quantile Prediction Measured ฮค โˆ†๐บ ๐บ max 20

  21. Kyoto Inst. of Tech. Conclusion ๏ฎ RTN prediction method by using circuit simulation with bimodal defect-centric distribution ๏ฎ Parameter extraction method for defect characteristics of bimodal model by measurement data ๏ฎ Replicate circuit-level RTN effect by Monte- Carlo simulation 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend