chip based optical frequency combs
play

Chip-Based Optical Frequency Combs Alexander Gaeta Department of - PowerPoint PPT Presentation

Chip-Based Optical Frequency Combs Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering KISS Frequency Comb Workshop Cal Tech, Nov. 2-5, 2015 Chip-Based Comb Generation


  1. Chip-Based Optical Frequency Combs Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering KISS Frequency Comb Workshop Cal Tech, Nov. 2-5, 2015

  2. Chip-Based Comb Generation spectrum single- frequency spectrum pump laser χ (3) interaction ω Microresonator spectrum Si 3 N 4 spectrum Modelocked nanowaveguide laser ω • Origin of combs can be traced to four-wave mixing (FWM) • Requires small anomalous group-velocity dispersion

  3. Chip-Based Comb Generation spectrum single- frequency spectrum pump laser χ (3) interaction ω Microresonator spectrum Si 3 N 4 spectrum Modelocked nanowaveguide laser ω • Origin of combs can be traced to four-wave mixing (FWM) • Requires small anomalous group-velocity dispersion

  4. Microresonator-Based Parametric Combs silica µ -toroids silica µ -spheres CaF 2 , MgF 2 , & quartz Del ’ Haye et al. , Nature (2007). Agha et al. , Opt. Express (2009). Savchenkov et al. , PRL (2008). Del ’ Haye et al. , PRL (2008). Liang et al. , Opt. Lett . (2011). Papp & Diddams, PRA (2011). Herr et. al. , Nat. Phot. (2012). high-index glass µrings silica disks & rods diamond Razzari et al. , Nature Photon. (2010). Li et al. , PRL (2012) Pasquazi et al. , Opt. Express (2013). Papp, et al., PRX (2013) Hausmann et al. , Nat. Photon. (2013). Si nitride silicon Al nitride Levy et al. , Nat. Photon. (2010). Griffith et al. , (2014). Ferdous et al. , Nat Photon. (2012). Jung et al. , Opt. Lett. (2013). Herr et al. , Nat. Photon. (2012).

  5. Microresonator-Based Parametric Combs silica µ -toroids silica µ -spheres CaF 2 , MgF 2 , & quartz Del ’ Haye et al. , Nature (2007). Agha et al. , Opt. Express (2009). Savchenkov et al. , PRL (2008). Del ’ Haye et al. , PRL (2008). Liang et al. , Opt. Lett . (2011). Papp & Diddams, PRA (2011). Herr et. al. , Nat. Phot. (2012). high-index glass µrings silica disks & rods diamond Razzari et al. , Nature Photon. (2010). Li et al. , PRL (2012) Pasquazi et al. , Opt. Express (2013). Papp, et al., PRX (2013) Hausmann et al. , Nat. Photon. (2013). Si nitride silicon Al nitride Levy et al. , Nat. Photon. (2010). Griffith et al. , (2014). Ferdous et al. , Nat Photon. (2012). Jung et al. , Opt. Lett. (2013). Herr et al. , Nat. Photon. (2012).

  6. Microresonator Comb Spectral Coverage CaF 2 [8] 4700 nm [7] 4600 nm MgF 2 [6] 4600 nm Si [5] 3400 nm Si 3 N 4 MgF 2 [4] 2550 nm Si 3 N 4 [3] 2350 nm SiO 2 [2] 2170 nm [1] 1540 nm Si 3 N 4 λ 0.5 μm 1 μm 1.5 μm 2 μm 2.5 μm 3 μm 3.5 μm 4 μm 4.5 μm 5 μm 5.5 μm 6 μm [1] Saha, et al., Lipson & Gaeta (2013); Luke, et al. , Gaeta & Lipson, in preparation (2015). [2] Del’Haye, et al ., and Kippenberg, Phys. Rev. Lett. (2011). [3] Okawachi, et al ., Lipson & Gaeta, Opt. Lett. (2011); Okawachi, et al ., Lipson & Gaeta, Opt. Lett. (2013). [4] Wang, et al ., and Kippenberg, Nature Comm (2012). [5] Griffiths, et al ., Gaeta & Lipson, Nat. Comm. (2015). [6] Luke, et al. , Gaeta and Lipson, in preparation (2015). [7] Lecaplain, et al., Kippenberg, arXiv (2015). [8] Savchenko, et al., Maleki, arXiv (2015).

  7. Silicon-Based Microresonators for Parametric Comb Generation cross-section deposited SiO 2 Si 3 N 4 µ -resonator Si 3 N 4 thermal SiO 2 • CMOS-compatible material • Fully monolithic and sealed structures and couplers • High- Q resonators à Si 3 N 4 Q = 7 × 10 6 [Luke, et al., Opt. Express (2013).] Q ~ 10 6 [Lee, et al., (2013).] Si • High nonlinearity à n 2 ~ 10-100 × silica • Waveguide dispersion can be engineered [Foster, et al., Lipson, Gaeta, Nature 441 , 960 (2006). Turner-Foster, et al., Gaeta, Lipson, Opt. Express 18 , 1904 (2010).]]

  8. Tailoring of GVD in Si-Based Waveguides GVD can be tuned by varying l waveguide shape and size. SiO 2 Same chip can operate w/ different l pump wavelengths. n ~ 3.5 Si/Si 3 N 4 (SiN: n ~ 2.1) Si 3 N 4 Si anomalous normal Oxide cladding limits generation < 5 µm (?) l Foster, Turner, Sharping, Schmidt, Lipson, and Gaeta, Nature 441 , 960 (2006). Turner, et al. Gaeta, and Lipson, Opt. Express 14 , 4357 (2006).

  9. Octave-Spanning Comb in Si 3 N 4 l > 150 THz bandwidth l Stable, robust, highly compact comb source for clock applications l Modest power requirements (100’s of mW) Okawachi, et al., Lipson, and Gaeta, Opt. Lett. (2011).

  10. Dispersion Engineering: Broadband Combs with 1- µ m Pump in Si 3 N 4 • 690 x 1400 nm cross section, 46- µ m resonator radius (500 GHz FSR) • >2/3 octave of continuous comb bandwidth Saha, et al., Lipson, and Gaeta, Opt. Express (2012) Luke et al. Lipson, Gaeta, to be published (2014).

  11. Mid-IR Comb in Si 3 N 4 0 Power (dBm) experiment -30 -60 2250 2500 2750 3000 3250 3500 Wavelength (nm) theory • 950 x 2700 nm waveguide • Fully filled in comb spanning 2.3 - 3.4um • P th ~ 80 mW, FSR = 99GHz Luke, et al., Gaeta & Lipson, Opt. Lett. (2015)

  12. Silicon as a Mid-IR Material Advantages: Problem: Large 3 rd order • Need to pump > 2 µm • nonlinearity • Three-photon absorption • Transparent to ~ 8 um Significant above 1 Watt • circulating power High refractive index • Three Photon Absorption Free carrier ω o ω o ω o e

  13. Fabricated Silicon Device • 510,000 intrinsic quality factor at 2.6 um • 0.8 dB/cm loss Wavelength (nm)

  14. Mid-IR Parametric Frequency Comb • 500 × 1400 nm etchless silicon microresonator with p-i-n structure • Q-factor ~10 6 • Measurement with FTIR OSA è Bandwidth limited by dynamic range of OSA • 2608-nm pump • 750-nm bandwidth • 125-GHz FSR (100 μm radius) Griffith, et al., Gaeta and Lipson, Nat. Comm. (2015)

  15. Comb Generation without Carrier Extraction Free carrier ω o Three Photon Absorption ω o ω o e

  16. Near Octave-Spanning Mid-IR Comb Generation in Si Microresonator • Pump wavelength 3095 nm RF signal RF analyzer • Comb spans > octave noise floor • Wavelength range: 2165 – 4617 nm • Comb exhibits low RF noise

  17. Chip-Based Comb Generation spectrum single- frequency spectrum pump laser χ (3) interaction ω Microresonator spectrum Si 3 N 4 spectrum Modelocked nanowaveguide laser ω • Origin of combs can be traced to four-wave mixing (FWM) • Requires small anomalous group-velocity dispersion

  18. Waveguide Design for Octave-Spanning Coherent SCG at 1 μm • Engineer dispersion by tailoring waveguide cross section • Design broad region of anomalous group velocity dispersion ( β 2 ) around 1-μm pump • Coherent SCG with 100-fs pump through self-phase modulation and dispersive wave emission 400 Cross section 690 x 900 nm ß 2 [ps 2 /km] 200 0 600 800 1000 1200 1400 1600 Wavlength [nm]

  19. Supercontinuum Generation with Diode-Pumped Solid-State Laser Collaboration w/ Ursula Keller’s group (ETH-Zurich) • Pump with 1-GHz repetition rate SESAM-modelocked diode-pumped 1-GHz cavity Yb:CALGO laser [ Klenner et al. , Opt. Express Yb:CALGO (2014)] multimode SESAM • 92-fs input pulses, 1055 nm center output pump diode coupler wavelength Power [dB] -30 -40 37 pJ coupled pulse energy -50 (37 mW average power) -60 600 800 1000 1200 1400 1600 Wavelength [nm]

  20. Supercontinuum Coherence Measurement 0 (a) 1 0.8 Power [dB] Visibility 0.6 -50 0.4 0.2 0 -100 600 800 1000 1200 1400 1600 Wavelength [nm] • OSA sweep records ensemble average (1) g 12 • Coherence related to visibility V ( λ ) [Nicholson and Yan, Opt. Express (2004); Gu et al. , Opt. Express (2011)] (1) I 1 ( λ ) I 2 ( λ ) 1/ 2 [ ] V ( λ ) = 2 g 12 V ( λ ) = I max ( λ ) − I min ( λ ) I max ( λ ) + I min ( λ ) [ ] I 1 ( λ ) + I 2 ( λ ) • Perform coherence measurement in 100-nm increments

  21. Coherent Supercontinuum for f-to-2f Interferometry 0 (a) 1 0.8 Power [dB] Visibility 0.6 -50 0.4 0.2 0 -100 600 800 1000 1200 1400 1600 Wavelength [nm] (b) 1 (c) 1 -20 Power [dB] Power [dB] -60 Visibility Visibility 0.5 0.5 -40 -80 0 0 1360 1400 1440 680 700 720 Wavelength [nm] Wavelength [nm]

  22. Carrier Envelope Offset Frequency Detection Using Silicon Nitride Waveguide • Carrier envelop offset frequency (f ceo ) beatnote from f -to-2 f interferometry • Spectrum at 1360 nm is frequency doubled and overlapped with spectrum at 680 nm • f ceo signal-to-noise ratio > 30 dB • Much lower noise level (10 dB) than w/ PCF f CEO SNR > 30 dB [ Mayer et al. , Opt. Express (2015)]

  23. Comparison of Comb Generation Schemes spectrum Pump Properties spectrum • single-frequency • P > 200 mW • CEO control Comb Properties ω • • Tuning for modelocking (?) Spacing > 20 GHz Microresonator Properties • > 200 µW/line • Thermal issues important • Stabilized ~ 2/3 Octave • Comb spacing control (thermal) • Near-IR – mid-IR • Modelocking (Thermal?) Pump Properties spectrum spectrum • Modelocked • < 200 fs for coherent comb ω Comb Properties • CEO & comb Nanowaveguide Properties • Spacing > 20 GHz spacing control • Passive • > 100 nW/line • P ~ 40 mW • Waveguide dispersion • Stabilized > Octave tailored longitudinally • Visible – mid-IR

  24. Compact Solid-State 5-GHz Modelocked Laser

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend