chimera combining ring lwe based fully homomorphic
play

CHIMERA: Combining Ring-LWE-based Fully Homomorphic Encryption - PowerPoint PPT Presentation

CHIMERA: Combining Ring-LWE-based Fully Homomorphic Encryption Schemes Mariya Georgieva 1 , 2 1 2 Joint work with: C. Boura, N. Gama, D. Jetchev 1 / 30 Homomorphic encryption Given ( c 1 , c 2 , . . . , c k ) = ( E ( m 1 ) , E ( m 2 ) , . . .


  1. CHIMERA: Combining Ring-LWE-based Fully Homomorphic Encryption Schemes Mariya Georgieva 1 , 2 1 2 Joint work with: C. Boura, N. Gama, D. Jetchev 1 / 30

  2. Homomorphic encryption Given ( c 1 , c 2 , . . . , c k ) = ( E ( m 1 ) , E ( m 2 ) , . . . , E ( m k )) The homomorphic computation consists to compute E ( f ( m 1 , m 2 , . . . , m k )) without decryption. A scheme that can homomorphically evaluate all function is said Fully Homomorphic 2 / 30

  3. Model of computations 1 Binary, circuit computations 2 Integer arithmetic 3 Approximated (Fixed-point) computations 3 / 30

  4. Geometry of the ciphertext Plan Geometry of the ciphertext 1 The Chimera framework 2 4 / 30

  5. Geometry of the ciphertext Integer/Real/Complex polynomials R Z = Z [ X ] / ( X N + 1) : the ring of polynomials with integer coefficients module X N + 1 R R = R [ X ] / ( X N + 1) : the ring of polynomials with real coefficients modulo X N + 1 R C = C [ X ] / ( X N + 1) : the ring of polynomials with complex coefficients modulo X N + 1 Examples (Real): N = 2 (1 . 2 + 2 . 3 X ) · (3 . 2 + 4 . 1 X ) = 3 . 84 + 12 . 28 X + 9 . 43 X 2 = 12 . 28 X − 5 . 59 mod ( X 2 + 1) ( R Z , + , × ), ( R R , + , × ) and ( R C , + , × ) are well defined as Ring ✔ ( R Z , + ), ( R R , + ) and ( R C , + ) are groups ✔ It is a Ring: x × y is defined! 5 / 30

  6. Geometry of the ciphertext Torus T and Torus polynomials T R ( T , + , · ) = R mod 1 is a Z -module ( · : Z × T → T a valid external product) ✔ It is a group x + y mod 1 , and − x mod 1 ✔ It is a Z -module: 0 · 1 2 = 0 is defined! ✘ It is not a Ring: 0 × 1 2 is not defined! 0 3 1 4 4 1 2 ( T R , + , · ) is a R Z -module Here, R Z = Z [ X ] mod ( X N + 1) And T R = R [ X ] mod ( X N + 1) mod 1 6 / 30

  7. Geometry of the ciphertext Torus T and Torus polynomials T R ( T , + , · ) = R mod 1 is a Z -module ( · : Z × T → T a valid external product) ✔ It is a group x + y mod 1 , and − x mod 1 ✔ It is a Z -module: 0 · 1 2 = 0 is defined! ✘ It is not a Ring: 0 × 1 2 is not defined! 0 3 1 4 4 1 2 ( T R , + , · ) is a R Z -module Here, R Z = Z [ X ] mod ( X N + 1) And T R = R [ X ] mod ( X N + 1) mod 1 6 / 30

  8. Geometry of the ciphertext Torus T and Torus polynomials T R ( T , + , · ) = R mod 1 is a Z -module ( · : Z × T → T a valid external product) ✔ It is a group x + y mod 1 , and − x mod 1 ✔ It is a Z -module: 0 · 1 2 = 0 is defined! ✘ It is not a Ring: 0 × 1 2 is not defined! 0 3 1 4 4 1 2 ( T R , + , · ) is a R Z -module Here, R Z = Z [ X ] mod ( X N + 1) And T R = R [ X ] mod ( X N + 1) mod 1 6 / 30

  9. Geometry of the ciphertext Torus T and Torus polynomials T R ( T , + , · ) = R mod 1 is a Z -module ( · : Z × T → T a valid external product) ✔ It is a group x + y mod 1 , and − x mod 1 ✔ It is a Z -module: 0 · 1 2 = 0 is defined! ✘ It is not a Ring: 0 × 1 2 is not defined! 0 3 1 4 4 1 2 ( T R , + , · ) is a R Z -module Here, R Z = Z [ X ] mod ( X N + 1) And T R = R [ X ] mod ( X N + 1) mod 1 6 / 30

  10. Geometry of the ciphertext LWE Encryption over the torus ( T = R / Z = R mod 1 ) 2 / 3 1 / 3 0 Example: M = { 0 , 1 / 3 , 2 / 3 } mod 1 µ = 1 / 3 mod 1 ∈ M 7 / 30

  11. Geometry of the ciphertext LWE Encryption over the torus ( T = R / Z = R mod 1 ) message ciphertext key lin. combin. product TLWE T 2 / 3 1 / 3 0 ( , ϕ ) Example: M = { 0 , 1 / 3 , 2 / 3 } mod 1 µ = 1 / 3 mod 1 ∈ M ϕ = µ + Gaussian Error 1 Random tag a ∈ T n 2 7 / 30

  12. Geometry of the ciphertext LWE Encryption over the torus ( T = R / Z = R mod 1 ) message ciphertext key lin. combin. product T n +1 TLWE T secret key : s ∈ { 0 , 1 } n 2 / 3 1 / 3 a 0 ( a , ϕ ) Example: M = { 0 , 1 / 3 , 2 / 3 } mod 1 µ = 1 / 3 mod 1 ∈ M ϕ = µ + Gaussian Error 1 Random tag a ∈ T n 2 7 / 30

  13. Geometry of the ciphertext LWE Encryption over the torus ( T = R / Z = R mod 1 ) message ciphertext key lin. combin. product T n +1 TLWE T secret key : s ∈ { 0 , 1 } n b = s · a + ϕ 2 / 3 1 / 3 a a 0 ( a , ϕ ) ( a , b ) Example: M = { 0 , 1 / 3 , 2 / 3 } mod 1 µ = 1 / 3 mod 1 ∈ M ϕ = µ + Gaussian Error 1 Random tag a ∈ T n 2 7 / 30

  14. Geometry of the ciphertext LWE Encryption over the torus ( T = R / Z = R mod 1 ) message ciphertext key lin. combin. product T n +1 B n TLWE T secret key : s ∈ { 0 , 1 } n 2 / 3 1 / 3 a a ϕ = b − s · a 0 ( a , ϕ ) ( a , b ) Example: M = { 0 , 1 / 3 , 2 / 3 } mod 1 µ = 1 / 3 mod 1 ∈ M Unlock the representation ( a , ϕ ) 1 Round ϕ to the nearest message µ ∈ M 2 7 / 30

  15. Geometry of the ciphertext LWE Encryption over the torus ( T = R / Z = R mod 1 ) message ciphertext key lin. combin. product T n +1 B n TLWE T secret key : s ∈ { 0 , 1 } n 2 / 3 1 / 3 a a ϕ = b − s · a 0 ( a , ϕ ) ( a , b ) Unlock the representation ( a , ϕ ) 1 Round ϕ to the nearest message µ ∈ M 2 7 / 30

  16. Geometry of the ciphertext LWE Encryption over the torus message ciphertext key lin. combin. product T n +1 B n TLWE T T k +1 B k TRLWE T R R a ′′ = x · a + y · a ′ x y a ′ = a ′′ a + b ′′ = x · b + y · b ′ b b ′ b ′′ x a + y a ′ = a ′′ ϕ ′′ = x · ϕ + y · ϕ ′ ϕ ϕ ′ ϕ ′′ α ′′ 2 = x 2 α 2 + y 2 α ′ 2 α = stdev( ϕ ) α ′ α ′′ 8 / 30

  17. Geometry of the ciphertext LWE Encryption over the torus message ciphertext key lin. combin. product T n +1 B n TLWE T ✔ ✘ T k +1 B k TRLWE T R ✔ ✘ R a ′′ = x · a + y · a ′ x y a ′ = a ′′ a + b ′′ = x · b + y · b ′ b b ′ b ′′ x a + y a ′ = a ′′ ϕ ′′ = x · ϕ + y · ϕ ′ ϕ ϕ ′ ϕ ′′ α ′′ 2 = x 2 α 2 + y 2 α ′ 2 α = stdev( ϕ ) α ′ α ′′ 8 / 30

  18. Geometry of the ciphertext message ciphertext key lin. combin. product T n +1 B n TLWE T ✔ ✘ T k +1 B k TRLWE T R ✔ ✘ R B k TRGSW R Z ℓ -vector of TRLWE TR(GSW) ciphertexts of µ ∈ R Z   TRLWE K ( K · µ 2 ) TRLWE K ( K · µ 4 )   TRLWE K ( K · µ  8 )  TRGSW ( µ ) =   TRLWE K (1 · µ 2 )   TRLWE K (1 · µ   4 ) TRLWE K (1 · µ 8 ) Internal Product (classical) : ⊠ : TRGSW × TRGSW − → TRGSW (Ring Structure) 1 External product (Asiacrypt 2016) : ⊡ : TRGSW × TRLWE − → TRLWE (Module Structure) 2 ( µ A , µ b ) �− → µ A · µ b ( ǫ A , ǫ b ) �− → || µ A || 1 ∗ ǫ b + O ( ǫ A ) If || µ A || 1 = 1 the noise propagation is linear! 9 / 30

  19. Geometry of the ciphertext message ciphertext key lin. combin. product T n +1 B n TLWE T ✔ ✘ T k +1 B k TRLWE T R ✔ ✘ R B k TRGSW R Z ℓ -vector of TRLWE ✔ ✔ TR(GSW) ciphertexts of µ ∈ R Z   TRLWE K ( K · µ 2 ) TRLWE K ( K · µ 4 )   TRLWE K ( K · µ  8 )  TRGSW ( µ ) =   TRLWE K (1 · µ 2 )   TRLWE K (1 · µ   4 ) TRLWE K (1 · µ 8 ) Internal Product (classical) : ⊠ : TRGSW × TRGSW − → TRGSW (Ring Structure) 1 External product (Asiacrypt 2016) : ⊡ : TRGSW × TRLWE − → TRLWE (Module Structure) 2 ( µ A , µ b ) �− → µ A · µ b ( ǫ A , ǫ b ) �− → || µ A || 1 ∗ ǫ b + O ( ǫ A ) If || µ A || 1 = 1 the noise propagation is linear! 9 / 30

  20. Geometry of the ciphertext message ciphertext key lin. combin. product T n +1 B n TLWE T ✔ ✘ T k +1 B k TRLWE T R ✔ ✘ R B k TRGSW R Z ℓ -vector of TRLWE ✔ ✔ TR(GSW) ciphertexts of µ ∈ R Z   TRLWE K ( K · µ 2 ) TRLWE K ( K · µ 4 )   TRLWE K ( K · µ  8 )  TRGSW ( µ ) =   TRLWE K (1 · µ 2 )   TRLWE K (1 · µ   4 ) TRLWE K (1 · µ 8 ) Internal Product (classical) : ⊠ : TRGSW × TRGSW − → TRGSW (Ring Structure) 1 External product (Asiacrypt 2016) : ⊡ : TRGSW × TRLWE − → TRLWE (Module Structure) 2 ( µ A , µ b ) �− → µ A · µ b ( ǫ A , ǫ b ) �− → || µ A || 1 ∗ ǫ b + O ( ǫ A ) If || µ A || 1 = 1 the noise propagation is linear! 9 / 30

  21. Geometry of the ciphertext Homomorphic scheme message ciphertext key lin. combin. product T n +1 B n TLWE T ✔ ✘ T k +1 B k TRLWE T R ✔ ✘ R B k TRGSW R Z ℓ -vector of TRLWE ✔ ✔ (Gate) Bootstrapping TLWE T + Key Extract Switching* Circuit Bootstrapping T R * Change the key and TRLWE evaluate morphisms (private or public) + External product TRLWE ⊡ Key switching R Z Z TRGSW + , ⊠ 10 / 30

  22. Geometry of the ciphertext Homomorphic scheme message ciphertext key lin. combin. product T n +1 B n TLWE T ✔ ✘ T k +1 B k TRLWE T R ✔ ✘ R B k TRGSW R Z ℓ -vector of TRLWE ✔ ✔ (Gate) Bootstrapping TLWE T + Key Extract Switching* Circuit Bootstrapping T R * Change the key and TRLWE evaluate morphisms (private or public) + External product TRLWE ⊡ Key switching R Z Z TRGSW + , ⊠ 10 / 30

  23. Geometry of the ciphertext Homomorphic scheme message ciphertext key lin. combin. product T n +1 B n TLWE T ✔ ✘ T k +1 B k TRLWE T R ✔ ✘ R B k TRGSW R Z ℓ -vector of TRLWE ✔ ✔ (Gate) Bootstrapping TLWE T + Key Extract Switching* Circuit Bootstrapping T R * Change the key and TRLWE evaluate morphisms (private or public) + External product TRLWE ⊡ Key switching R Z Z TRGSW + , ⊠ 10 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend