module lwe vs ring lwe
play

Module-LWE vs. Ring-LWE? Amit Deo Royal Holloway, University of - PowerPoint PPT Presentation

Module-LWE vs. Ring-LWE? Amit Deo Royal Holloway, University of London 15 January, 2018 1/56 Main Aim of the Talk 1. Discuss popular variants of the LWE problem 2. Present a collection of reductions between the variants 3. Explicitly state


  1. Module-LWE vs. Ring-LWE? Amit Deo Royal Holloway, University of London 15 January, 2018 1/56

  2. Main Aim of the Talk 1. Discuss popular variants of the LWE problem 2. Present a collection of reductions between the variants 3. Explicitly state parameter expansions in the reductions 2/56

  3. Outline 1. Definitions 2. Motivation for Ring/Module-LWE 3. Normal Form Secrets 4. “BLPRS13” Style Reductions 5. “Structure-Building” Reduction 3/56

  4. Section 1 Definitions 4/56

  5. Notation Vectors x ∈ Z n q : ◮ Entries integers modulo q , i.e. Z q ◮ Dimension n , i.e. x = ( x 0 , . . . , x n − 1 ) Ring elements r ∈ R q = Z q [ X ] / ( X n + 1): ◮ Coefficients integers modulo q ◮ Degree at most n − 1 i.e. r = r 0 + r 1 · X + · · · + r n − 1 · X n − 1 ∈ Z q [ X ] / ( X n + 1) ◮ Coefficient Embedding r = ( r 0 , . . . , r n − 1 ) ∈ Z n q 5/56

  6. Notation Module elements m ∈ R d q : ◮ A d -tuple of ring elements m = ( m 0 , . . . , m d − 1 ) ◮ Multiplication: m · n := m 0 n 0 + · · · + m d − 1 · n d − 1 Terminology : ◮ q is a “modulus” ◮ n is a “(ring) dimension” ◮ d is a “module rank” ◮ m is the number of samples 6/56

  7. Notation: Distributions ◮ U ( X ) - uniform distribution over set X 7/56

  8. Notation: Distributions ◮ U ( X ) - uniform distribution over set X ◮ χ σ - discrete gaussian over the integers, s.d. σ ◮ D Λ ,σ - discrete gaussian over lattice Λ, s.d. σ ◮ D Λ , r - discrete ellipsoidal gaussian with s.d.’s r i ∈ R 7/56

  9. Notation: Distributions ◮ U ( X ) - uniform distribution over set X ◮ χ σ - discrete gaussian over the integers, s.d. σ ◮ D Λ ,σ - discrete gaussian over lattice Λ, s.d. σ ◮ D Λ , r - discrete ellipsoidal gaussian with s.d.’s r i ∈ R ◮ D σ - continuous gaussian over R ◮ D r - continuous ellipsoidal gaussian over R n with s.d.’s r i 7/56

  10. Generic LWE Problem Framework Given some uniform random a , b = a · s + e : ◮ (search LWE) decode the noisy product b i.e. recover s from b for “small” e ◮ (decision LWE) distinguish b from uniform random 8/56

  11. Generic LWE Problem Framework Given some uniform random a , b = a · s + e : ◮ (search LWE) decode the noisy product b i.e. recover s from b for “small” e ◮ (decision LWE) distinguish b from uniform random Plain LWE sample: a ← Z n q ; s ← U or χ n σ , e ← χ σ ; b ∈ Z q a 1 e 1 b 1 a 2 e 2 b 2 . + a m = s a 1 a 2 … , … … … a m e m b m 8/56

  12. Distributions and Parameters ◮ Uniform a ◮ Error distribution: discrete gaussian e ← χ σ ◮ Secret distribution: uniform s or s ← χ n σ Plain LWE sample: a ← Z n q ; s ← χ n σ , e ← χ σ ; b ∈ Z q 9/56

  13. Distributions and Parameters ◮ Uniform a ◮ Error distribution: discrete gaussian e ← χ σ ◮ Secret distribution: uniform s or s ← χ n σ Plain LWE sample: a ← Z n q ; s ← χ n σ , e ← χ σ ; b ∈ Z q ◮ Absolute error σ ◮ Error rate α := σ/ q 9/56

  14. Practical Ring-LWE Let R q = Z q [ X ] / ( X n + 1). Given some uniform random a ∈ R q , ◮ (search) recover s ∈ R q from b = a · s + e for “small” e ∈ R q ◮ (decision) decide whether b = a · s + e or b is random 10/56

  15. Practical Ring-LWE Let R q = Z q [ X ] / ( X n + 1). Given some uniform random a ∈ R q , ◮ (search) recover s ∈ R q from b = a · s + e for “small” e ∈ R q ◮ (decision) decide whether b = a · s + e or b is random Error distribution: s , e ← χ n σ n a . s + e a = b , n 10/56

  16. Almost Proper Ring-LWE Given some uniform random a ∈ R q , ◮ (search) recover s ∈ ( R q ) d from b = 1 q a · s + e mod 1 for “small” e ∈ R q ◮ (decision) decide whether b = 1 q a · s + e mod 1 or b is random Notes: ◮ The error distribution is now continuous ◮ The discrete Gaussian distribution χ σ becomes continuous Gaussian D α where α := σ/ q ◮ Ignoring canonical embedding and dual ring 11/56

  17. Practical Module-LWE Given some uniform random a ∈ ( R q ) d , ◮ (search) recover s ∈ ( R q ) d from b = a · s + e for “small” e ∈ R q ◮ (decision) decide whether b = a · s + e or b is random 12/56

  18. Practical Module-LWE Given some uniform random a ∈ ( R q ) d , ◮ (search) recover s ∈ ( R q ) d from b = a · s + e for “small” e ∈ R q ◮ (decision) decide whether b = a · s + e or b is random Error distribution: s ← χ nd σ , e ← χ n σ nd a . a + = s b e , n 12/56

  19. Almost Proper Module-LWE Given some uniform random a ∈ ( R q ) d , ◮ (search) recover s ∈ ( R q ) d from b = 1 q a · s + e mod 1 for “small” e ∈ R q ◮ (decision) decide whether b = 1 q a · s + e mod 1 or b is random Notes: ◮ The error distribution is now continuous ◮ The discrete Gaussian distribution χ σ becomes continuous Gaussian D α where α := σ/ q ◮ Once again, we ignore canonical embedding and dual ring 13/56

  20. Other Variants ◮ Learning with Rounding (LWR) ◮ Compact-LWE ◮ Binary-LWE ◮ And many more 14/56

  21. Section 2 Motivation for Ring-LWE/Module-LWE 15/56

  22. Efficiency vs. Security ◮ Representing n LWE samples: ◮ O ( n ) integers (Ring-LWE) ◮ O ( nd ) integers (Module-LWE) ◮ O ( n 2 ) integers (LWE) 16/56

  23. Efficiency vs. Security ◮ Representing n LWE samples: ◮ O ( n ) integers (Ring-LWE) ◮ O ( nd ) integers (Module-LWE) ◮ O ( n 2 ) integers (LWE) ◮ Lattice hardness: ◮ Ideal lattices SIVP (Ring-LWE) ◮ Module lattices SIVP (Module-LWE) ◮ General lattices SIVP (LWE) 16/56

  24. Flexibility of Module-LWE ◮ R = Z q [ X ] / ( X n + 1) for power-of-two n ◮ Effective Ring-LWE dimensions: 256 , 512 , 1024 , 2048 , . . . ◮ Effective Module-LWE dimensions: 256 · d , d = 1 , 2 , . . . Note: The cost of multiplying using Module-LWE is larger than the cost of multiplying for Ring-LWE of the same effective dimension. 17/56

  25. Section 3 Transforming Secret Distributions 18/56

  26. Normal Form LWE Lemma Let q be prime. Given m > n uniform secret LWE samples ( A , b ) ∈ Z n × m × Z m q , we can produce m − n normal form LWE q samples ( A ′ , b ′ ) ∈ Z n × ( m − n ) × Z ( m − n ) (with significant probability q q 1 − O (1 / q ) ). 19/56

  27. Normal Form LWE Lemma Let q be prime. Given m > n uniform secret LWE samples ( A , b ) ∈ Z n × m × Z m q , we can produce m − n normal form LWE q samples ( A ′ , b ′ ) ∈ Z n × ( m − n ) × Z ( m − n ) (with significant probability q q 1 − O (1 / q ) ). Proof. 1. Write A = [ A 1 | A 2 ] where A 1 ∈ Z n × n is invertible. q 2. b = [ b 1 | b 2 ] T := [ A 1 | A 2 ] T s + [ e 1 | e 2 ] T 3. Set A ′ := − A − 1 1 A 2 , b ′ := A ′ T b 1 + b 2 = A ′ e 1 + e 2 . 19/56

  28. Non-Uniform Secret − → Uniform Secret Lemma Given a LWE sample ( a , b ) with non-uniform secret s, we can obtain a LWE sample ( a , ˜ b ) with a uniform secret ˜ s. Proof. 1. Sample s ′ ← U . 2. Output LWE sample � � b := b + a · s ′ = a · ( s ′ + s ) + e = ( a , a · ( s ′ + s ) + e ). a , ˜ 20/56

  29. Section 4 BLPRS13 Style Reductions 21/56

  30. Modulus-Dimension Switching LWE Reduction 1 Lemma There exists a reduction from → LWE m , n ′ = n / k , q ′ = q k , D β where β = O ( α √ n ) . LWE m , n , q , D α − “We can reduce the dimension at the cost of increasing the modulus while changing the error rate by a √ n factor without decreasing hardness.” 1 Z. Brakerski, A. Langlois, C. Peikert, O. Regev, D. St´ ehle. Classical hardness of learning with errors. STOC13 22/56

  31. Reduction Intuition Goal Find a reduction (i.e. transformation F ) such that the original LWE distribution almost maps to the target LWE distribution where the effect that F has on the secret is reversible. F (LWE) ∼ indist. LWE ′ a ′ ∈ Z n / k F a ∈ Z n − → q q k s ′ ∈ Z n / k F s ∈ Z n − → q q k � 1 � 1 � � b ′ = q k a ′ · s ′ + e ′ F b = q a · s + e mod 1 − → mod 1 23/56

  32. Reduction Intuition n = 3 , n / k = 1 a ′ = a 0 + qa 1 + q 2 a 2 s ′ = s 2 + qs 1 + q 2 s 0 24/56

  33. Reduction Intuition n = 3 , n / k = 1 a ′ = a 0 + qa 1 + q 2 a 2 s ′ = s 2 + qs 1 + q 2 s 0 q 3 a ′ · s ′ ≡ 0 + 1 1 q a · s + 1 = ⇒ q 2 ( a 0 · s 1 + a 1 · s 2 ) + . . . mod 1 ≅ 1 q a · s mod 1 24/56

  34. Reduction Intuition n = 3 , n / k = 1 a ′ = a 0 + qa 1 + q 2 a 2 s ′ = s 2 + qs 1 + q 2 s 0 q 3 a ′ · s ′ ≡ 0 + 1 1 q a · s + 1 = ⇒ q 2 ( a 0 · s 1 + a 1 · s 2 ) + . . . mod 1 ≅ 1 q a · s mod 1 Therefore take b ′ = b 24/56

  35. A Closer Look at the Error Distribution Want to analyse the distribution of: b ′ − 1 q n a ′ · s ′ = e − � q j − i − 1 a j s i i > j Problem: ◮ q j − i − 1 a j s i are not continuous gaussians ✗ 25/56

  36. INTERLUDE: Fixing a “Bad” Error Distribution - Discrete Version Aim Given bad non-Gaussian distribution ˆ e , make it look like a discrete Gaussian. How? Drown by adding a wide discrete Gaussian i.e. consider ˆ e + χ σ 26/56

  37. Fixing a “Bad” Error Distribution - Discrete Version 0.35 0.3 0.25 0.2 0.15 0.1 0.05 -4 -2 2 4 27/56

  38. Drowning ( σ = 3) 0.14 0.12 0.1 0.08 0.06 0.04 0.02 -15 -10 -5 5 10 15 28/56

  39. Drowning ( σ = 10) 0.04 0.03 0.02 0.01 -30 -20 -10 10 20 30 29/56

  40. Drowning ( σ = 10) 0.04 0.03 0.02 0.01 -4 -2 2 4 30/56

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend