checking timed regular expressions on boolean signals
play

Checking Timed Regular Expressions on Boolean Signals Eugene - PowerPoint PPT Presentation

Checking Timed Regular Expressions on Boolean Signals Eugene Asarin, Thomas Ferrere, Oded Maler, Dogan Ulus Verimag & LIAFA July 9, 2014 Here we begin Introduction Patterns exist on signals. (Intentionally or unintentionally) Checking


  1. Checking Timed Regular Expressions on Boolean Signals Eugene Asarin, Thomas Ferrere, Oded Maler, Dogan Ulus Verimag & LIAFA July 9, 2014

  2. Here we begin Introduction Patterns exist on signals. (Intentionally or unintentionally) Checking patterns is an important verification task. Regular Expressions (Usual solution) Uses: PSL, SVA This work A complete solution for Timed Pattern Matching problem 2 / 23

  3. Timed Pattern Matching Problem (Timed Pattern Matching) Let T = [0 , d ] . Given a dense-time signal w : T → B m and a timed regular expression ϕ , find all intervals ( t , t ′ ) ∈ T × T that matches ϕ . We need to define ... 1 Timed Regular Expressions 2 Match-Set 3 / 23

  4. Timed Pattern Matching Problem (Timed Pattern Matching) Let T = [0 , d ] . Given a dense-time signal w : T → B m and a timed regular expression ϕ , find all intervals ( t , t ′ ) ∈ T × T that matches ϕ . We need to define ... 1 Timed Regular Expressions 2 Match-Set 4 / 23

  5. Timed Regular Expressions Definition (Syntax of TRE) ϕ := ǫ | p | p | ϕ · ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ∗ | � ϕ � I ( p propositional variable; I duration constraint) 5 / 23

  6. Timed Regular Expressions Definition (Syntax of TRE) ϕ := ǫ | p | p | ϕ · ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ∗ | � ϕ � I ( p propositional variable; I duration constraint) It will match ... ϕ := p — any interval s.t. p uniformly holds ϕ := p · q — any interval s.t. p followed by q ϕ := � p · q � [3 , 4] — any interval with a duration between [3,4] s.t. p followed by q 6 / 23

  7. Timed Regular Expressions Definition (Syntax of TRE) ϕ := ǫ | p | p | ϕ · ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ∗ | � ϕ � I ( p propositional variable; I duration constraint) Definition (Semantics of TRE) ( w , t , t ′ ) � ǫ ↔ t = t ′ t < t ′ and ∀ s ∈ ( t , t ′ ) : p [ s ] = 1 ( w , t , t ′ ) ↔ � p ( w , t , t ′ ) similar � p ( w , t , t ′ ) � ϕ · ψ ↔ ∃ t ′′ . ( w , t , t ′′ ) � ϕ and ( w , t ′′ , t ′ ) � ψ ( w , t , t ′ ) � ϕ ∨ ψ ↔ ( w , t , t ′ ) � ϕ or ( w , t , t ′ ) � ψ ( w , t , t ′ ) � ϕ ∧ ψ similar ∃ k ≥ 0 . ( w , t , t ′ ) � ϕ k ( w , t , t ′ ) � ϕ ∗ ↔ t ′ − t ∈ I and ( w , t , t ′ ) � ϕ ( w , t , t ′ ) � � ϕ � I ↔ 7 / 23

  8. An Example Expression ϕ := � ( p ∧ q ) · ¯ q · q � [4 , 5] · ¯ p Signals p q 0 2 4 6 8 10 12 8 / 23

  9. An Example Expression ϕ := � ( p ∧ q ) · ¯ q · q � [4 , 5] · ¯ p Signals p q 0 2 4 6 8 10 12 A few matches p ∧ q q ¯ q p ¯ 1 . 3 2 . 0 6 . 06 . 3 6 . 8 p ∧ q ¯ ¯ q q p 1 . 5 2 . 0 6 . 0 6 . 4 7 . 0 9 / 23

  10. Problem Statement Definition (Match-set) For a signal w and an expression ϕ the match-set is M ( ϕ, w ) := { ( t , t ′ ) ∈ T × T | ( w , t , t ′ ) � ϕ } Problem (Timed pattern matching) Given a signal and an expression compute the match-set. 10 / 23

  11. Problem Statement Definition (Match-set) For a signal w and an expression ϕ the match-set is M ( ϕ, w ) := { ( t , t ′ ) ∈ T × T | ( w , t , t ′ ) � ϕ } Problem (Timed pattern matching) Given a signal and an expression compute the match-set. 11 / 23

  12. Data Structure Definition (2D Zone) A 2D zone is a subset of R 2 described by inequalities d < t ′ − t < d e < t ′ < e b < t < b with b , b , e , e , d , d are constants. About 2D zones Representing a set of intervals (t, t’) [ b , b ] , [ e , e ] , [ d , d ] correspond begin, end and duration constraints. Zones (in general) used for timed automata verification; efficient algorithms and libraries exist. Many examples below. 12 / 23

  13. Main Result Theorem The match-set M ( ϕ, w ) is a finite union of 2D zones. It is computable knowing expression ϕ and signal w. Method for algorithms Structural induction over ϕ . 13 / 23

  14. Main Result Theorem The match-set M ( ϕ, w ) is a finite union of 2D zones. It is computable knowing expression ϕ and signal w. Method for algorithms Structural induction over ϕ . 14 / 23

  15. Computation: Literals 12 A Literal 11 10 M ( p ) — a union of triangle zones 9 8 7 6 5 4 3 2 1 p 0 p 0 1 2 3 4 5 6 7 8 9 10 11 12 1 Dropping w when w is clear 15 / 23

  16. Computation: Time Restriction 12 Time Restriction 11 10 M ( � ϕ � I ) = M ( ϕ ) ∩{ ( t , t ′ ) | t ′ − t ∈ I } 9 8 7 6 5 4 3 2 1 � p � [1 , 2] 0 p 0 1 2 3 4 5 6 7 8 9 10 11 12 16 / 23

  17. Computation: Concatenation Concatenation M ( ϕ · ψ ) = M ( ϕ ) ◦ M ( ψ ) Composition preserves zones ( t , t ′ ) ∈ M ( ϕ ) ◦ M ( ψ ) ↔ ∃ t ′′ : ( t , t ′′ ) ∈ M ( ϕ ) ∧ ( t ′′ , t ′ ) ∈ M ( ψ ) Can be obtained using standard zone operations. 17 / 23

  18. Concatenation with pictures 8 7 t ′ 6 5 t ′′ 4 3 2 ϕ ψ 1 ϕ · ψ 0 p p q q t t ′′ t ′ 0 1 2 3 4 5 6 7 8 Explanation ϕ := � p � [1 , ∞ ] , ψ := � q � [0 , 2] and ϕ · ψ 18 / 23

  19. Back to the First Example Expression ϕ := � ( p ∧ q ) · ¯ q · q � [4 , 5] · ¯ p Signals p q 0 2 4 6 8 10 12 Correct Result M ( ϕ, w ) := { ( t , t ′ ) ∈ [1 , 2] × [6 , 7] } 19 / 23

  20. Back to the First Example Match-Set Computation 12 11 10 9 8 7 6 5 4 3 p ∧ q p q 2 ¯ p q ¯ ( p ∧ q ) · ¯ q 1 0 12 11 10 9 8 7 6 5 4 3 2 � ( p ∧ q ) · ¯ q · q � [4 , 5] � ( p ∧ q ) · ¯ q · q � [4 , 5] · ¯ p ( p ∧ q ) · ¯ q · q 1 0 20 / 23 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12

  21. Performance Experimental Setup p � [0 , 10] ) ∗ ∧ ( � q · ¯ q � [0 , 10] ) ∗ � [80 , ∞ ] ϕ := � ( � p · ¯ V L | Z ϕ | Time (s) A complex expression ϕ . 0.025 40000 0 0.08 Random signals p and q 0.025 80000 0 0.17 with variability V and 0.025 160000 0 0.37 length L 0.05 40000 0 0.27 0.05 80000 0 0.60 0.05 160000 0 1.27 Notes 0.075 40000 1 0.64 0.075 80000 4 1.40 Python calling IF zone 0.075 160000 5 2.88 library (in C) 0.1 40000 10 1.35 0.1 80000 23 2.73 0.1 160000 47 5.83 21 / 23

  22. Conclusion Summary Timed Pattern Matching Zones to represent match-sets Experiments witness scalability. Discussion Trivial to extend for any discrete value domain. Natural companion for specification logics. 22 / 23

  23. More patterns using zones Thanks 23 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend