charge extraction
play

Charge Extraction Lecture 9 10/06/2011 MIT Fundamentals of - PowerPoint PPT Presentation

Charge Extraction Lecture 9 10/06/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 Fall 2011 Prof. Tonio Buonassisi Buonassisi (MIT) 2011 2.626/2.627 Roadmap You Are Here Buonassisi (MIT) 2011 2.626/2.627: Fundamentals Every


  1. Charge Extraction Lecture 9 – 10/06/2011 MIT Fundamentals of Photovoltaics 2.626/2.627 – Fall 2011 Prof. Tonio Buonassisi Buonassisi (MIT) 2011

  2. 2.626/2.627 Roadmap You Are Here Buonassisi (MIT) 2011

  3. 2.626/2.627: Fundamentals Every photovoltaic device must obey:    Output Energy Conversion Efficiency  Input Energy For most solar cells, this breaks down into: Inputs Outputs ฀ Charge Light Charge Charge Charge Solar Spectrum Drift/Diff Absorption Excitation Separation Collection usion  total   absorption   excitation   drift/diffusion   separation   collection Buonassisi (MIT) 2011 ฀

  4. Liebig’s Law of the Minimum S. Glunz, Advances in Optoelectronics 97370 (2007) Image by S. W. Glunz. License: CC-BY. Source: “High -Efficiency Crystalline Silicon Solar Cells .” Advances in OptoElectronics (2007).  total   absorption   excitation   drift/diffusion   separation   collection Buonassisi (MIT) 2011 ฀

  5. Learning Objectives: Charge Extraction 1. Describe the purpose of contacts, and their most common types. 2. Describe the impact of good and poor contacts on IV characteristics. 3. Sketch the IV characteristics of Schottky and Ohmic contacts. 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction. 5. Sketch common band alignments (Types 1, 2, 3 junctions). 6. Sketch common solar cell device architectures. Buonassisi (MIT) 2011

  6. Contacts • …extract carriers from device. • …prevent back -diffusion of carriers into device. • …are studied extensively in the semiconductor industry (several good review papers) for “common” semiconductors. • …are semiconductor -specific: While fundamentals generally apply universally, the devil is in the details, and each material system requires individual optimization. • … are influenced heavily by surface states (i.e., repeatable surface preparation is a must !) Buonassisi (MIT) 2011

  7. Materials Commonly Used for Contacts • Metals – Optically opaque. – Electrically conductive. • Transparent Conducting Oxides (TCOs) – Optically transparent. – Electrically conductive. Buonassisi (MIT) 2011

  8. Properties of TCOs Conductivity (  ) Transparency Quartz Glass Si Ge ITO Ag 1 Visible Transparency Semi Insulator Metal conductor 6 -18 -14 -10 -6 -2 2 log  (S/cm) 0 0 1 2 3  = n  e Energy of light (eV)  Transmittance: > 80% (Films) n - carrier conc. (cm -3 )  Range: 400 ~ 700 nm  - mobility (cm 2 /Vs)  Band gap > 3.1eV e - charge per carrier Buonassisi (MIT) 2011

  9. How TCOs Work CB E 1 = Large E E 3 = very small E F E 2 = Large VB x Buonassisi (MIT) 2011

  10. Learning Objectives: Charge Extraction 1. Describe the purpose of contacts, and their most common types. 2. Describe the impact of good and poor contacts on IV characteristics. 3. Sketch the IV characteristics of Schottky and Ohmic contacts. 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction. 5. Sketch common band alignments (Types 1, 2, 3 junctions). 6. Sketch common solar cell device architectures. Buonassisi (MIT) 2011

  11. Equivalent Circuit: Simple Case Lin Scale I-V Curve Current Density (mA/cm2) 1.E+00 8.E-01 J 0 6.E-01 V ja V 4.E-01 2.E-01 0.E+00 0 0.2 0.4 0.6 0.8 Voltage (V) Log Scale     I-V Curve J  J 0 exp qV Current Density (mA/cm2)  1  J L   1.E+00     kT 1.E-02 1.E-04 1.E-06 1.E-08 1.E-10 ฀ 0 0.2 0.4 0.6 0.8 Voltage (V) Buonassisi (MIT) 2011

  12. Equivalent Circuit: Simple Case I-V Curve Current Density (mA/cm2) 5.E-02 R s 4.E-02 J 0 3.E-02 V ja V 2.E-02 1.E-02 0.E+00 0 0.2 0.4 0.6 0.8 Voltage (V)       J  J 0 exp q V  JR s I-V Curve Current Density (mA/cm2)      1  J L  1.E+00  kT     1.E-02 1.E-04 1.E-06 1.E-08 1.E-10 ฀ 0 0.2 0.4 0.6 0.8 Voltage (V) Buonassisi (MIT) 2011

  13. Equivalent Circuit: Simple Case I-V Curve Current Density (mA/cm2) 5.E-02 R s 4.E-02 J 0 3.E-02 R sh V ja V 2.E-02 1.E-02 0.E+00 0 0.5 1 Voltage (V)       I-V Curve J  J 0 exp q V  JR s  V  JR s Current Density (mA/cm2)      1  J L 1.E+00   kT R sh     1.E-02 1.E-04 1.E-06 1.E-08 ฀ 1.E-10 0 0.5 1 Voltage (V) Buonassisi (MIT) 2011

  14. Equivalent Circuit: Simple Case R s J 0 R sh V ja V Courtesy of PVCDROM. Used with permission. Firing contacts? Three possibilities:       J  J 0 exp q V  JR s  V  JR s 1. Contact just right: low R s , large R sh .      1  J L   2. “Underfired” contact: Poor contact with kT R sh     Si, large R s . 3. “Overfired” contact: Metal drives too deep into Si, low R sh . ฀ Buonassisi (MIT) 2011

  15. Learning Objectives: Charge Extraction 1. Describe the purpose of contacts, and their most common types. 2. Describe the impact of good and poor contacts on IV characteristics. 3. Sketch the IV characteristics of Schottky and Ohmic contacts. 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction. 5. Sketch common band alignments (Type 1, 2, 3, and 4 junctions). 6. Sketch common solar cell device architectures. Buonassisi (MIT) 2011

  16. Classes of Contacts Ohmic and Schottky Contacts • Ohmic: – Linear I-V curve. + – Typically used when Current (a.u.) charge separation is not a goal for metallization. 0 Schottky Ohmic • Schottky: - – Exponential I-V curve. – Used when charge - 0 + separation is desired. Voltage (a.u.) Buonassisi (MIT) 2011

  17. Learning Objectives: Charge Extraction 1. Describe the purpose of contacts, and their most common types. 2. Describe the impact of good and poor contacts on IV characteristics. 3. Sketch the IV characteristics of Schottky and Ohmic contacts. 4. Describe what fundamental material parameters determine the IV characteristics of a contact/semiconductor junction. 5. Sketch common band alignments (Types 1, 2, 3 junctions). 6. Sketch common solar cell device architectures. Buonassisi (MIT) 2011

  18. Step #1: Schottky Theory (the ideal case) Buonassisi (MIT) 2011

  19. Contacts: Schottky Model E Vacuum q c q f M E C E F E V Semiconductor Metal x Buonassisi (MIT) 2011

  20. Contacts: Schottky Model E Vacuum q f M q c E C E F E V Metal Semiconductor x Buonassisi (MIT) 2011

  21. Contacts: Schottky Model • For Ohmic contact: f m > f s • Barrier Height: f b = f m - c • Contact Potential: V bi = f m - f s • Space-charge region width: 2  s W  V o qN D ฀ Courtesy of Tesfaye Ayalew. Used with permission. http://www.iue.tuwien.ac.at/phd/ayalew/node56.html Buonassisi (MIT) 2011

  22. Classes of Contacts • Ohmic: – Electron barrier Ohmic and Schottky Contacts height ≤ 0 (for n -type) – Linear I-V curve. + – Typically used when charge separation is Current (a.u.) not a goal for 0 metallization. Schottky Ohmic • Schottky: - – Electron barrier height > 0 (for p-type) - 0 + – Exponential I-V curve. – Used when charge Voltage (a.u.) separation is desired. Buonassisi (MIT) 2011

  23. Evaluating Metals for Contacts - Schottky Model Courtesy of Tesfaye Ayalew. Used with permission. http://www.iue.tuwien.ac.at/phd/ayalew/node56.html Buonassisi (MIT) 2011

  24. Reality: Deviations from Schottky theory • Substantial deviations from Schottky theory are possible, due to interface effects including: – Orientation-dependent surface states. – Elemental nature of surface termination in binary compounds ( e.g. , A or B element?). – Interface dipoles. – and more … Courtesy of Tesfaye Ayalew. Used with permission. http://www.iue.tuwien.ac.at/phd/ayalew/node56.html Buonassisi (MIT) 2011

  25. Role of Surface States For related visuals, please see the lecture 9 video or the reference below. D.K. Schroder, IEEE Trans. Electron Dev. 31 , 637 (1984) Buonassisi (MIT) 2011

  26. Contacts: Schottky Model • For Ohmic contact: f m > f s • Barrier Height: f b = f m - c • Contact Potential: V bi = f m - f s • Space-charge region width: 2  s W  V o qN D ฀ Courtesy of Tesfaye Ayalew. Used with permission. http://www.iue.tuwien.ac.at/phd/ayalew/node56.html Buonassisi (MIT) 2011

  27. Thermionic Emission & Field Emission Effects For related visuals, please see the lecture 9 video or the reference below. D.K. Schroder, IEEE Trans. Electron Dev. 31 , 637 (1984) Buonassisi (MIT) 2011

  28. Evaluating Metals for Contacts - Practical • Sources: – Reference books – Review articles – Scientific articles – Trusted websites https://web.archive.org/web/20130818214213/ http://www.siliconfareast.com/ohmic_table.htm • NB: – Surface states matter!! Be sure you have repeatable surface preparation. Buonassisi (MIT) 2011

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend