characterization of trajectories using constraint
play

Characterization of trajectories using constraint programming and - PowerPoint PPT Presentation

Capture set Maze Braketting T Applications Characterization of trajectories using constraint programming and abstract interpretation T. Le Mzo, L. Jaulin , B. Zerr T. Le Mzo, L. Jaulin , B. Zerr Characterization of trajectories


  1. Capture set Maze Braketting ← − T Applications Characterization of trajectories using constraint programming and abstract interpretation T. Le Mézo, L. Jaulin , B. Zerr T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  2. Capture set Maze Braketting ← − T Applications Capture set T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  3. Capture set Maze Braketting ← − T Applications We consider a state equation ˙ x = f ( x ) . Example : The Van der Pol system � ˙ = x 1 x 2 � 1 − x 2 � ˙ = · x 2 − x 1 x 2 1 T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  4. Capture set Maze Braketting ← − T Applications T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  5. Capture set Maze Braketting ← − T Applications Let ϕ be the flow map. The capture set of the target T ⊂ R n is: ← − T = { x 0 | ∃ t ≥ 0 , ϕ ( t , x 0 ) ∈ T } . T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  6. Capture set Maze Braketting ← − T Applications To each state, we associate a path. T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  7. Capture set Maze Braketting ← − T Applications Graph analogy T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  8. Capture set Maze Braketting ← − T Applications A deterministic graph G 1 with a target T (red), a dead path (blue). T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  9. Capture set Maze Braketting ← − T Applications It can be approximated by a non deterministic graph G 2 : T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  10. Capture set Maze Braketting ← − T Applications Using a backward method, we compute an interval containing ← − T . T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  11. Capture set Maze Braketting ← − T Applications Which corresponds to an interval of graphs: Our new approach : bracket ← − T , we search for paths not for states. T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  12. Capture set Maze Braketting ← − T Applications Maze T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  13. Capture set Maze Braketting ← − T Applications An interval is a domain which encloses a real number. A polygon is a domain which encloses a vector of R n . A maze is a domain which encloses a path. T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  14. Capture set Maze Braketting ← − T Applications A maze is a set of paths. T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  15. Capture set Maze Braketting ← − T Applications Mazes can be made more accurate by adding polygones. T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  16. Capture set Maze Braketting ← − T Applications Or using doors instead of a graph T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  17. Capture set Maze Braketting ← − T Applications Here, a maze L is composed of A paving P A polygon for each box of P Doors between adjacent boxes T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  18. Capture set Maze Braketting ← − T Applications The set of mazes forms a lattice with respect to ⊂ . L a ⊂ L b means : the boxes of L a are subboxes of the boxes of L b . The polygones of L a are included in those of L b The doors of L a are thinner than those of L b . T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  19. Capture set Maze Braketting ← − T Applications The left maze contains less paths than the right maze. Note that yellow polygons are convex. T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  20. Capture set Maze Braketting ← − T Applications Inner approximation of ← − T T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  21. Capture set Maze Braketting ← − T Applications Main idea : Compute an outer approximation of the complementary of ← − T : ← − T = { x 0 | ∀ t ≥ 0 , ϕ ( t , x 0 ) / ∈ T } Thus, we search for a path that never reach T . T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  22. Capture set Maze Braketting ← − T Applications Target contractor . If a box [ x ] of P is included in T then remove [ x ] and close all doors entering in [ x ] . T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  23. Capture set Maze Braketting ← − T Applications Flow contractor . For each box [ x ] of P , we contract the polygon using the constraint ˙ x = f ( x ) . T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  24. Capture set Maze Braketting ← − T Applications Inner propagation T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  25. Capture set Maze Braketting ← − T Applications T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  26. Capture set Maze Braketting ← − T Applications [ c ] [ b ] [ a ] [ e ] [ d ] [ f ] T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  27. Capture set Maze Braketting ← − T Applications T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  28. Capture set Maze Braketting ← − T Applications T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  29. Capture set Maze Braketting ← − T Applications T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  30. Capture set Maze Braketting ← − T Applications T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  31. Capture set Maze Braketting ← − T Applications T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  32. Capture set Maze Braketting ← − T Applications T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  33. Capture set Maze Braketting ← − T Applications Outer propagation T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  34. Capture set Maze Braketting ← − T Applications [ c ] [ b ] [ a ] [ e ] [ d ] [ f ] An interpretation can be given only when the fixed point is reached. T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  35. Capture set Maze Braketting ← − T Applications Car on the hill T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  36. Capture set Maze Braketting ← − T Applications � ˙ = x 1 x 2 � 11 � ˙ = 9 . 81sin 24 · sin x 1 + 0 . 6 · sin ( 1 . 1 · x 1 ) − 0 . 7 · x 2 x 2 T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  37. Capture set Maze Braketting ← − T Applications T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  38. Capture set Maze Braketting ← − T Applications Research box X 0 = [ − 1 , 13 ] × [ − 10 , 10 ] Blue: T out = X 0 ; Red: T in = [ 2 , 9 ] × [ − 1 , 1 ] T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  39. Capture set Maze Braketting ← − T Applications Combined with an outer propagation T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  40. Capture set Maze Braketting ← − T Applications Van der Pol system T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  41. Capture set Maze Braketting ← − T Applications Consider the system � ˙ = x 1 x 2 � 1 − x 2 � ˙ = · x 2 − x 1 x 2 1 and the box X 0 = [ − 4 , 4 ] × [ − 4 , 4 ] . T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  42. Capture set Maze Braketting ← − T Applications f → − f ; T = X 0 ∪ [ − 0 . 1 , 0 . 1 ] 2 . T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  43. Capture set Maze Braketting ← − T Applications f → − f ; T out = X 0 ; T in = [ 0 . 5 , 1 ] 2 . T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

  44. Capture set Maze Braketting ← − T Applications Combined with an outer propagation T. Le Mézo, L. Jaulin , B. Zerr Characterization of trajectories using constraint programming

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend